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,God, grant me the serenity to accept the things | cannot change,
the courage to change the things | can,
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1 General Introduction

| invite the reader to take a moment to think about what is possible and what determines
it. As key concept in various disciplines, the possible describes the area of human experience
that lies beyond the here and now. “The possible is not opposed either to the ‘actual’ or the
‘real’ and, in fact, our capacity to engage with what is possible grows out of concrete experi-
ences and ends up transforming them” (Glaveanu, 2023, p. vii).

With the advent of Virtual Reality (VR), researchers have yet another tool at their disposal
to push the boundaries of possibilities and make recently unimaginable experiences happen.
Early VR pioneers, like Sutherland (1968) and Lanier (1989), were quick to embrace the tech-
nological opportunities, creating virtual environments already decades ago, with incredibly
minimal hardware resources by today's standards. The miniaturization of transistors (Wu et
al. 2007) and breakthroughs in organic light-emitting diodes (Kang et al. 2022) made it possi-
ble to produce today’s state-of-the-art VR devices, especially VR headsets. Soon, the idea of
an interconnected world emerged, the Metaverse, that partially replaces the deteriorating
real word, at least as a part-time habitat (Stevenson 1994). The author depicts a scenario in
which the whole society adopts a parallel immersive virtual world into their everyday lives.
With the rebranding of a large social media platform company to “Meta”, some enthusiasts
were already heralding the dawn of this new era. However, current sales figures, customer
sentiment, and technical developments point in a different direction. Inadequate network
infrastructure, interoperability issues, and blockchain throughput limitations are just some
of the major problems that let the Metaverse remain rather fiction than reality (Ball 2022).
To sum up, the current state of VR technology is proving to be less disruptive than the
smartphone, and barriers such as general technology aversion, discomfort in wearing, and a
lack of VR applications are resulting in less adoption than some enthusiasts expected.

Nonetheless, in certain niche areas the current state of VR technology proves to be suc-
cessful. For example, the learning and teaching domain shows promising use cases for VR
(Renganayagalu et al. 2021). Consumer behavior and human computer interaction research
also benefits from the latest VR technology (Stepanova et al. 2023). Eye tracking in VR and
the recording of additional (bio-)sensors allows to adapt to the user and offers various re-

search opportunities (MeiBner et al. 2019).



Previous research has identified good timing as relevant factor for interactions between
buyer and seller (Friemel et al. 2018; Lieven 2016). Our basic assumption is that most sellers
will eventually offer virtual stores and showrooms that consumers can enter using a VR
headset. Thus, we pose all research question of this dissertation in the realm of virtual
commerce. We cover different aspects of consumer behavior and user interaction with the
virtual environment, be it with a human-like agent or a modest interface element. A com-
mon denominator and thread that runs through the manuscripts is the pursuit of questions
about adaptivity of these help providers, especially the timing of interference with the user.

Our articles document the boundaries of virtual commerce with the state of VR hardware
and software limitations in the year 2025. At the same time, our artifacts and results shape
the future virtual commerce landscape by providing guidance and applicable examples to
practitioners and future generations of researchers.

The first presented paper, Paper A, is about a machine learning project that shows how
InceptionTime, a deep learning time series classifier, can predict healthy product choices in a
VR shopping environment. Our investigation is based on a large-scale VR data set of more
than thousand product choices that was collected by Peukert et al. (2019). The goal is to
predict healthy and unhealthy product choices using eye tracking data. Because the observa-
tions in the sample exhibit high class imbalance (mostly unhealthy product choices), we ap-
ply an evaluation metric that is geared towards the correct prediction of healthy choices
(what introduces a flavor of nudging towards healthy products). We find superior perfor-
mance of the deep time series classifier in comparison to a shallow gradient boosting base-
line model. Overall, the results suggest that the presented method may be useful as feature
generator for a gaze-based recommender system.

Paper B focuses on good interference timing of user assistance in VR and combines ideas
from the educational and consumer behavior domain. We present an experimental design
that covers two stages: in the first stage participants perform mentally demanding tasks; in
the second stage they perform a purchase decision. We train a cognitive load classifier on
the mentally demanding tasks of the first stage. The features consist of eye tracking and
electrocardiography recordings that we synchronize and aggregate. Subsequently, the cogni-
tive load classifier evaluates the purchase decisions based on the same features. Our results

suggest that a good timing for algorithmic user assistance may be predicted based on cogni-



tive load. However, the demand for help by an avatar seems to be affected by further influ-
ence factors, such as age and openness of the participant.

Paper C is a spin-off from the project presented in Paper B. We present an approach that
utilizes a Hidden Markov Model with gaussian mixture distributions to discern decision-
making sub phases. The Gaussian distributions represent different eye tracking and electro-
cardiography features, like fixations, saccades, and heart rate variability. The results suggest
that sub phases of the decision-making processes and the transitions between the sub phas-
es are detectable by means of the collected eye tracking and electrocardiography features.

Paper D is a lab linking project in cooperation with Bremen University. In a distributed
setup, we mimic a customer interaction in the Metaverse and simulate sales conversations
in a virtual commerce showroom. A human agent is steering an avatar either in third-person
or with a full-body motion tracking suit, what entails different levels of fidelity. With a quali-
tative approach, we pursue the question how uncanny the agent is perceived and if we can
improve the impression of the participants iteratively. Following the research questions of
our previous study, we collect opinions about the right interference timing of the agent. We
derive a simple appearance rule set to have actionable advice for the agent, based on the
consumer gaze patterns.

As the final contribution of this dissertation, Paper E is a project that was also initialized by
Christian Peukert, who created the initial experimental design. | took over his research by
performing modifications to the questionnaire, experiment application, and by conducting
the lab sessions with the help of my student assistants. The study investigates whether con-
text-aware user assistance fosters trust, and if this relation is mediated by perceived intelli-
gence of the system and perceived control over the system. Moreover, we investigate if ex-
planations about the system’s behavior alter these relations. In our case, context-awareness
refers to whether the system is present from the very beginning or if it appears adaptively
using eye tracking information. We report a Bayesian statistical analysis that provides evi-
dence for the hypothesized mediation paths. In the analysis, we compare different variants
of parallel mediations and an alternative moderated mediation approach using different

prior distributions and control variables.
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2 Paper A: Early Bird — Predict healthy product choices in virtual
commerce
Tobias Weil, Jella Pfeiffer, and Thies Pfeiffer

Abstract

Due to advances in extended reality technology, an increasing number of head-mounted
displays are equipped with eye trackers. These sensors allow to predict customers’ prefer-
ences on-the-fly. Such information can serve as features for recommender systems. We pro-
pose to treat eye tracking data as time series and utilize a deep time series classifier for in-
ference. Our evaluation investigates possibly early predictions about customer preferences
for healthy products in a virtual reality environment. The results, that are based on data
from a large-scale laboratory experiment, demonstrate superior performance of the time
series classifier, compared to a shallow gradient boosting baseline. They indicate a trade-off
between prediction quality and how early this prediction is made. Overall, our study sug-
gests that eye tracking and time series classification are valuable avenues for research and
practice. Adaptive (shopping) assistants and recommendations based on artificial intelli-

gence and bio sensors seem to be in close vicinity.

Keywords: Extended Reality, Eye Tracking, Healthy Consumption, Time Series Classification,

Virtual Commerce



2.1 Introduction

Healthy food choices are a highly relevant topic for making predictions and recommenda-
tions in retail context (Cho et al. 2014; Naruetharadhol et al. 2023), as food choices are an
important determinant of physical health and well-being (Wahl et al. 2017; Block et al. 2011;
Bublitz et al. 2013). After the disruptive retail transformation from physical warehouses to
e-commerce, a slower but continuous development towards virtual commerce is taking
place (Evans and Wurster 1999; Bourlakis et al. 2009; Gadalla et al. 2013; Kovacova et al.
2022). Extended Reality (XR), an umbrella term for Augmented Reality (AR) and Virtual Reali-
ty (VR), found its way into Western society. Through interaction and high realism, this new
technology offers unprecedented opportunities that may encourage consumers to make
healthier choices. Research on the topic is needed that investigates new challenges and op-
portunities. Thus, we think that retailers should seize the opportunity and adjust their user
assistance capabilities in order to meet the eminent needs of consumers who visit their fu-
ture (at least partly virtual) commerce environments (Regt and Barnes 2019). Examples are
adaptive head-up displays (HUDs that display customized product information and compari-
son options), personalized side-by-side recommendations, contextual advertising, and cross-
platform nudges based on individual characteristics and preferences (Mariotti et al. 2023).

While acknowledging that research should advocate for rigid privacy measures within any
XR environment, technological developments will most likely lead consumers to wear XR
headsets, equipped with various bio sensors, for prolonged periods. Today, the first con-
sumer-grade XR devices offer bio sensor based features, such as foveated rendering (Patney
et al. 2016) and gaze-based interactions (Piumsomboon et al., 2017). One reason for our
anticipated proliferation of biosensors is the privacy-personalization paradox, which de-
scribes the fact that people readily give personal information away if they expect utility
while misjudging the real value of their personal information (Hoang et al. 2023).

Especially eye tracking (ET) based applications are a unique selling point in the current XR
adoption phase. Eventually, ET could become a quality-of-life feature which consumers take
for granted, like the camera in smartphones. ET can help to achieve a high degree of person-
alization and serve as an additional source of information for recommender systems
(MeiBner et al. 2019). In XR recommendation scenarios, ET may eventually replace click

streams and historical data to a large extent. This is because ET allows close investigation of



the user’s decision process and at the same time is available in the early phase of a purchase
situation (Pfeiffer et al. 2020; MeilRner et al. 2019).

Regarding the consumer preference (the dependent variable), we focus on healthy con-
sumption because in different societies around the world, an increased attention on a
healthy lifestyle is noticeable (Parashar et al. 2023). Policy makers are introducing healthi-
ness indicators like the Nutri-score label and are actively fostering a healthy consumption
(Hercberg et al. 2021), which is even included in the United Nations Sustainable Develop-
ment Goals (Fernandez 2019). Therefore, a valuable customer insight is whether a person is
open to suggestions that support healthy product choices or not (Tran et al. 2018). In the
light of these developments, we pose following research question:

Can we identify customers who buy healthy products possibly early during their decision
process in a virtual commerce scenario?

Shallow machine learning approaches have already been successfully applied in previous
studies that predicted other aspects of the customer journey, for example the customers’
search motives (Pfeiffer et al. 2020) or the duration of intermediate decision stages (WeiR et
al. 2023). A logic next step is to leverage deep learning to make predictions. An increasing
amount of data and architectural improvements are likely to allow training of highly general-
izing (or very precise, specialized) models. We treat the ET data as a discrete time series and,
as further contrast to previously mentioned works, compare InceptionTime, one of the most
promising deep learning approaches for time series classification, with the shallow gradient
boosting method XGBoost which uses cross-sectional features.

With this paper, we contribute to the information systems literature in theoretical and
practical manner. (i) As theoretical contribution, we show the superiority of using the com-
plete time series of ET data in contrast to treating the ET data as cross-sectional data (by
aggregating the number of fixations and other attributes). (ii) On the practical side, we show
a promising way to personalize assistance systems in future metaverse applications based on
the inobtrusive collection of ET data. Our paper describes a machine learning approach
based on ET data which can be used to personalize XR experiences. The resulting features
are of particular interest for new products or, more generally, in cases where user data is
absent. (iii) Moreover, we investigate the trade-off between prediction quality and timing.

Overall, our results inform the reader about interesting time windows during the decision



process in our experimental purchase situation. From a broader research perspective, we

show a promising way to personalize assistance systems in future metaverse applications.

2.2 Related Work

Already several Second Life studies pioneered connected 3D environments in virtual retail
platforms (Bourlakis et al. 2009; Gadalla et al. 2013; Papagiannidis and Bourlakis 2010). The
authors have depicted a transformation of traditional retail and outlined evolving marketing
opportunities in the virtual space. Their conclusions emphasize the need for highly personal-
ized and precisely timed customer service. Today, such connected virtual environments are
thought of as the Metaverse, which are accessible via various XR devices. Recent compre-
hensive literature reviews about Metaverse shopping (Kliestik et al. 2022; Alcafiiz et al. 2019;
Shen et al. 2021) and AR shopping (Popescu et al. 2022) show how earlier claims, that were
made for desktop environments, remain valid in XR. Virtual commerce research has diversi-
fied while recommendations and personalization remain highly relevant. A further recent
review by Xi and Hamari (2021) categorizes 83 XR shopping studies along different axes
(theories, in- and output devices, tracking technology, products, cognitive reactions, behav-
ioral outcomes) and suggests a number of avenues for future research. Among these sugges-
tions is an effective and efficient design of XR shopping, which is the area this work contrib-
utes to. The Metaverse is steadily taking shape (Peukert et al. 2022; Sriram 2022), head-
mounted displays (HMDs) technology is advancing (Spagnolo et al. 2023), and HMD prices
are deteriorating (Jensen and Konradsen 2018).

Various experiments have shown the significant impact of recommendations on the shop-
ping behavior of customers, such as Li et al. (2022). Particularly in advertisement driven envi-
ronments, recommender systems are very important business components. For instance,
Google! accounts 40% of the Play Store app installations and 60% of the YouTube watch
time to recommendations made by their recommender system. Collecting implicit infor-
mation which reflects user preferences, like ET data, is an unobtrusive approach. This is im-
portant, as finding similarities between individuals should happen without any disruption of
the consumer. Working with ET data in the context of recommender systems is nothing new

(Castagnos et al. 2010; Xu et al. 2008; Zhao et al. 2016), but previous studies focused on

! https://developers.google.com/machine-learning/recommendation/overview




desktop based e-commerce websites. Moreover, these studies do not aim for an early pre-
diction of user preferences.

Generally speaking, gaze patterns have potential to improve various aspects of digital and
virtual commerce. Takahashi et al. (2022) presented a work in which they utilized ET to op-
timize a desktop-based 3D store layout. With the goal to support customers’ decision-
making processes, the experiment software used gaze information to rearrange the dis-
played products. Another step towards gaze-pattern utilization in shopping context was
made by David-John et al. (2021). Their experimental design consisted of selection tasks of
food items listed on recipes in a VR scene. The authors predicted the participants’ intent to
interact using logistic regression on gaze patterns. They treated the data as time series but
only for a relatively short prediction horizon of 0.17 to 1 second. The results suggest that the
used model can predict the users’ interaction timing in real-time with above-chance accura-
cy.

Further ET studies have examined healthy food choices (Fenko et al. 2018; Kim et al. 2018)
but the prediction horizon of these studies covered the whole decision-making process until
the very end. Typical research using ET in the field of consumer behavior focuses on under-
standing and modelling the entire decision process up to the final purchase. For example, ET
research has found the gaze cascade effect which describes a pre-decisional focus of atten-
tion on the chosen product (Shimojo et al. 2003; Krajbich and Rangel 2011). Regarding our
research gap, none of these studies predicted customers’ preferences early in the decision
process.

In a hybrid field study, Pfeiffer et al. (2020) investigated grocery shopping behavior, espe-
cially the differences between a real and virtual supermarket. The authors did not predict
consumers’ preferences but two different shopping patterns, namely goal directed and ex-
ploratory search behavior. To predict shopping patterns, they analyzed the collected ET data
of 29 participants in VR (a room-sized CAVE environment) and 20 in a real supermarket.
Their evaluation covered increasing time windows on a per second basis. These windows
were calculated using the intervals from the start of each trial to [5; 100] seconds into the
decision-making process, increasing by one second. Due to the experimental setup, the clas-
ses were balanced, which is different compared to data presented in our study. They used
shallow machine-learning approaches for point-in-time related features and not for time

series. We call these features cross-sectional, as they are single values which are aggregated
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over the whole predefined period. This work identified the total number of fixated products
and the variance of the average fixation duration among the most important predictor vari-
ables.

Millecamp et al. (2021) reported gaze pattern classification results for personality traits in
the context of a browser-based music recommender system. The authors conducted a study
with 30 participants in which eye movements were recorded using a desktop-based tracker.
Their goal was to acquire predictions about the participants’ openness, need for cognition,
and musical sophistication. The authors considered 30%, 60%, and 90% of the data as time
windows for their predictions. These time windows were less than the whole task duration
but 60% and 90% of the decision-making process cannot be considered as particularly early
stages. In general, their work showed the potential of using ET for adaptation of recommen-
dations and explanations. However, in the conclusion they outlined improvement potential
for the model’s performance and called for further research on different tasks and interfac-
es.

Our search for related work indicates a research gap that previous authors did not particu-
larly focus on early prediction of consumer preferences based on gaze patterns. So far, no
proposal has been made to leverage ET data to generate features for recommender systems
in VR which are generated possibly early in customer decision-making processes. Further-
more, to the best of our knowledge, no previous study used ET data with a state-of-the-art
time series classification model to predict customer choices for healthy products. Using time
series can improve performance because of leveraging information retrieved from behavior

over time.

2.3 Method

2.3.1 Experimental Design

As dependent variable, we are interested in the healthiness of different muesli (cereal)
purchase decisions. To categorize all products as healthy or unhealthy, the package label
serves as a discriminative criterion. Representatives of the healthy and unhealthy classes are
illustrated in Figure 1, where the left package is the healthy and the right package is the un-
healthy alternative. The highlighted healthy label reads “without added sugar, wholegrain”.

We categorized a product as healthy if the packaging indicated at least reduced (or no) sugar
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or fat. According to this definition, seven out of the total 40 available products in the exper-
iment were marked as healthy products. In total, out of 1040 product choices, 158 (15.2%)
were for healthy products. The imbalanced class ratio leads to methodological challenges,

which we discuss in the section on the treatment of class imbalances.

Figure 1. Criterion for healthy (left) and unhealthy (right) is the packaging label.

Our observations of retail purchase decisions in VR were collected in a controlled envi-
ronment in a European University laboratory. The experimental design allowed our research
group to answer several questions. Thus, the data is used in further studies which investigate
the impact of low versus high immersion on system adoption (Peukert et al. 2019) and the
impact of virtual reality in a conjoint-based choice analysis (Meilner et al. 2020). The VR
scene was created using Unity 5.5.3f1 game engine. Participants were situated in a plain vir-
tual room with a shelf of product packages and a shopping cart, as shown in Figure 2 (slightly
distorted due to copyright reasons). We used an HTC Vive HMD with a dual display with

2160x1200 pixels resolution, an integrated SMI eye tracker, and HTC hand-held controllers.

Figure 2. Virtual environment with a muesli package shelf and a shopping cart.
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After signing an informed consent form, all participants made multiple product choices in
front of a product shelf. Participation compensation amounted to 14 Euro in total. To pro-
vide an economic incentive, participants received one of their product choices at random as
part of their compensation. We instructed the participants to choose according to their nat-
ural preference and subtracted the cost of the chosen product from the monetary payout.
Each experimental session was preceded by a training phase to familiarize the participants
with the virtual environment. For this training, the shelf was filled with baking mixtures. In
the subsequent experimental trials, the virtual shelf contained muesli products. In total, it
held 24 different options which were selected from a product pool of 40 mueslis. Their ar-
rangement followed a design which was suited for a conjoint-based choice analysis (Chrzan
and Orme 2000). At any time, the product positioning ruled out centrality effects (Atalay et
al. 2012). Furthermore, we positioned mueslis of the same brand close to each other. For
each trial, one out of 171 product arrangements were displayed on the shelf. On average,

the shelf contained 4.27 (SD 1.09) healthy products.

Group VR 1 (63 participants) Group VR 2 (69 participants)

Traini |

1 choice task (fixed layout) in VR

7 VR choice tasks (conjoint-based choice product layout) in VR

2 fixed choice tasks in VR ! 2 fixed-choice-tasks-inreality i

Figure 3. The experimental setup. We exclude the training task and real-world decisions.

Our sample consists of 132 student recordings, of which 45 were females and 87 males,
with an average age of 22.13 (SD 1.98). The experiment followed a between-subjects design
in which one treatment group was asked to make their last two purchase decisions in front
of a real shelf (with real products). We had to exclude these real-world tasks because the ET
equipment differed substantially between the VR and real-world setup. Thus, each partici-
pant made a total of either eight or ten product choices in VR, depending on the treatment
group (see Figure 3). In other words, for the present study, we only used purchase decisions
that were made in VR. After excluding the training task and erroneous recordings, the VR

trials yield 1040 product choices, with an average decision duration of 54.91 seconds (SD
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33.49). However, we further reduced the number of evaluated trials in the preprocessing
because many of the respective decision-making processes were too short (less than 45 sec-
onds) to separate them meaningfully into sub-phases (like orientation and evaluation). We
chose 45 seconds as cutoff duration because of logic considerations about a decision pro-
cess: a participant would need approximately 15 seconds to get an overview over the as-
sortment and another 30 seconds to decide between the items in their consideration set

(Hauser 2014).

2.3.2 Preprocessing

First, we determined fixations from the raw ET data and calculated the subject’s gaze tar-
get for each fixation, which we tracked by means of ray casting (Pietroszek 2019). We did
not consider blinks, pupil dilation and saccades. However, we emphasize that additional fea-
tures could further improve predictive performance. In this paper we deliberately chose to
focus on visual attention, which is best described by fixations (Holmqvist et al. 2011). In gen-
eral, fixations last between 0.2 and 0.4 seconds. Fixations of less than 0.1 seconds were ex-
cluded, as they are too short for conscious information processing (Duchowski 2017). Fixa-
tions lasting longer than 10 seconds were also excluded, as they most likely indicate unnatu-
ral behavior or faulty sensor information. Predefined areas of interest comprised different
parts of the individual product packages and their related price tags. This enabled us to dis-
criminate fixations on different product groups (healthy and unhealthy products). Further-
more, fixations on each individual product and individual product’s nutrition table were
treated separately.

Transforming the gaze data into a discrete multivariate time series is the next prepro-
cessing step. To aggregate the fixations into discrete bins, it was necessary to choose differ-
ent step sizes for the cut-off points of the bins. We evaluated the step values (0.5, 0.6, 0.7,
0.8,0.9,1, 2, 3,4,5, 6,9) seconds for the time series generation process. These values are
based on reasoning about the average and maximum duration of a single fixation as de-
scribed above. Shorter steps would often contain no fixation at all, and longer periods would
cover too many fixations and be too coarse. We applied a sliding window technique (Hota et
al. 2017) such that all bins overlapped with the previous one by 50%. The purpose of apply-

ing a sliding window is to capture interesting patterns that might be hidden by disjoint inter-
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vals. For each step size, we calculated the number of fixations, mean, variance, and skew-
ness of the fixation duration (overall and for each of the areas of interest separately).

Our goal is to provide recommendations as early as possible during the evaluation phase
of the respective decision. Therefore, we aimed to partially cut off the orientation and vali-
dation phase of the decision process as described in the on-the-fly-detection decision phase
model by Peukert et al. (2020). In the orientation phase, consumers scan their environment,
get an overview of the assortment, and do not compare different product choices in detail.
For our data, the average transition from orientation to evaluation occurred in second 8 and
the second transition from evaluation to verification occurred in second 47. Accordingly, we
considered all integers in the interval [0;15] seconds as start values for our time series and
all integers in the interval [20; 45] seconds as stop values. Using these intervals logically en-
tailed to exclude decisions which lasted less than 45 seconds. Therefore, keeping shorter
decisions would have confounded the input time series because trials shorter than 45 sec-
onds would have to be filled with default values. After excluding all purchase processes
shorter than 45 seconds, 516 relevant product choices remained for evaluation, with 78
(15.1%) healthy choices. To train and evaluate the classification models, a random split of
training (60%), validation (20%), and test (20%) was used. We also allowed for recurring cus-
tomers, i.e., we did not assign all trials of one participant to a single set. This means we as-

sume that customers can return to the store, which is typical for grocery shopping.

2.3.3 Time Series Classifier

The deep learning approach InceptionTime (Ismail Fawaz et al. 2020) is a time series spe-
cific successor to the image classification model Inception, also referred to as GoogleNet
(Szegedy et al. 2015). InceptionTime is one of the current state-of-the-art deep learning ap-
proaches for time series classification (Middlehurst et al. 2021). The InceptionTime building
blocks mainly consist of convolutional layers and pooling layers (Aggarwal 2018). The refer-
ence implementation proposes to stack six InceptionTime modules sequentially. As shown
on the left in Figure 4, each module consists of several stages. A bottleneck layer (stage 1a)
reduces the input dimensionality. The main components are three convolutional layers of
different kernel sizes (stage 2a). Additionally, a parallel MaxPooling layer (stage 1b) makes
the model invariant to small perturbations. This is followed by another bottleneck layer

(stage 2b) to reduce dimensionality. At the end of each module (stage 3), the output of the
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convolutions and the max pooling operation are concatenated and serve as input to the next
layer. As shown on the right in Figure 4, InceptionTime uses shortcut connections between
every third InceptionTime module. These shortcuts help to overcome the vanishing gradient
problem (Hochreiter 1998) and overfitting (Goodfellow et al. 2016). Finally, a dense classifi-

cation head (a fully connected softmax layer) outputs the predicted probabilities for each

class.
Next Layer / Dense Classification Head
Inception Module =
A =
2a| Convolution 1D Convolution 1D ‘ ‘ Convolution 1D ‘ 2b Bottleneck Inception Module g
1a Bottleneck b Max Pooling 1D | LmeEp Module—g

Input: Multi-dimensional Time Series (pofentially from previous layer with residual) Input

Figure 4. An InceptionTime module on the left and a shortcut connection on the right.

Adapted from Ismail Fawaz et al. (2020).

The Inception architecture is based on two main ideas: First, reducing the dimensionality
(via bottleneck layers) keeps the computational complexity low and mitigates overfitting for
small datasets. Second, convolutional components with different receptive fields capture
different aspects of the time series (Luo et al. 2016). For temporal data, the receptive field
can be thought of as the maximum field of view of a neuron. The larger the receptive field is,
the longer the patterns that can be detected by the neuron. The model uses multiple paral-
lel, densely connected convolutional layers with different kernel sizes (see Figure 4, stage 2a)
that allow to capture different aspects of the time series. During the trials, an asynchronous

hyperband scheduler (Li et al. 2020) facilitated the exploration of 50 different combinations.

Table 1 shows the complete hyperparameter space.
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Table 1. The hyperparameter space which we used in the InceptionTime tuning process.

Name Values Description

Activation ReLU (Agarap 2019);

function eLU (Clevert et al. 2015)

Alpha [0.1; 0.3] Uniform Focal loss

Bottleneck size (32, 64,128) Inception Module 1a,
2b

Gamma [0.1; 0.3] Uniform Focal loss

Kernel Multiplier | (4, 6, 8, 18) Inception Module 2a

Learning Rate [1e-1, 1e-6] Log uniform Optimizer

Num Filters (8, 16, 32) Inception Module 2a

Num Modules (3, 6) InceptionTime

In total, the different start, stop, and step size values resulted in 4990 possible combina-
tions. A high-performance cluster was used to compute all respective trials. The Ray Tune
framework (Liaw et al. 2018), combined with the slurm task scheduler (Yoo et al.), allowed
us to partially parallelize the optimization of the InceptionTime instances, which all ran for a

maximum of 100 epochs, using up to 75 compute nodes equipped with 24 CPU cores.

2.3.4 Class Imbalance Treatment

In our data, only 15.2% of choices were for healthy products. The applied methods need
to take this class imbalance into account. Otherwise, classifiers tend to always predict the
majority class. Different paradigms to treat imbalanced data exist, namely data-level, algo-
rithm-level, and hybrid methods (Krawczyk 2016). We used an a balanced focal loss function
(Lin et al. 2017) for the neural network optimizer to discount the majority classes. It is a hy-
brid approach that combines cost modifying and algorithmic adjustments. Focal loss is a
modification of the widely used cross-entropy loss function (Goodfellow et al. 2016). The

main idea is to discount correctly classified samples of the majority class, i.e., the contribu-
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tion to the total loss value is large for wrong predictions of the minority class. Focal loss and
can be denoted as

p, ify=1
— p, otherwise

FocalLoss(p;) = —a; (1 — p.)Y log (p;), with p; = { 1 )

Parameter a; specifies the minority class proportion in the test data set, p; € [0, 1] is the
predicted class probability for the sample, and y € {0, 1} is the target label. The focusing
intensity y = 0 determines the rate for discounting easy samples. Note that, when y =0,
focal loss equals cross-entropy.

A further algorithmic measure is the evaluation with a suited scoring metric. For the pre-
diction of imbalanced data the accuracy metric is unexpressive (Bekkar et al. 2013). Accuracy
would put too much attention on unhealthy product choices (precision) and too little on
healthy ones (recall). The Fg metric allows to adjust the trade-off between recall and preci-
sion (Maratea et al. 2014). A value for parameter [ greater than one emphasizes the im-
portance of recall while a value less than one emphasizes the importance of precision. For
this study, § = 1.5 is used because we focus more on recall than on precision. Choosing
Fg_15 means we deliberately expose some of the purchasers of unhealthy mueslis to rec-
ommendations for healthy products as trade-off for a higher classification rate of intended
healthy product choices (which may be interpreted as a form of nudging). The Fp score
(Maratea et al. 2014) can be denoted as

Precision - Recall
(B2 - Precision)+ Recall

(2)

2.3.5 Gradient Boosting Trees Baseline

This gradient boosting baseline considers aggregated, one-dimensional, features, which is
the current standard. Utilizing multi-dimensional features in form of time series is more
promising because it allows considering the complete decision-making process in form of a
vector, from the start of the purchase situation until the point-of-time when a recommenda-
tion should be made.

Gradient boosting served as a baseline for this study, as it has shown good results in simi-
lar setups (Millecamp et al. 2021; Pfeiffer et al. 2020). We implemented it using the XGBoost
(Chen and Guestrin 2016) and scikit-learn (Pedregosa et al. 2011) packages. This model did
not require a distinct validation dataset for training. Instead a 10-fold cross validation (Re-

faeilzadeh et al. 2009) ensured generalizability on the data set, permuting the combined
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training and validation subsets. The features for the gradient boosting model consist of the
same underlying information (e.g., number of fixations) but aggregate it with respect to the
total interval length. Analogous to the time series, we used Fg-, 5 as scoring metric and
chose the intervals [0; 15] for start timestamps and [20; 45] for stop timestamps. To find a
good set of hyperparameters (colsample_bytree, gamma, learning_rate, max_depth,
min_child_weight, n_estimators, scale_pos_weight, subsample) a randomized search was

performed for 100 trials on all possible start-stop combinations.

2.4 Results

Figure 5 shows two different prediction horizons (i) the first 25 seconds and (ii) the first 45
seconds of the decision process. The 25-second horizon is based on the idea of making rec-
ommendations early in the product evaluation process. A recommender system would have
enough time to generate content after a feature extraction phase of 25 seconds at the be-
ginning of the decision process. On average, the 45-second horizon covers the entire evalua-

tion phase and can be seen as the upper limit for a recommender system to make sugges-

tions.
Start =4 Start =7
Stop = 24 Stop = 43
Step = 1.0 Step = 9.0
F-Beta = 0.53 F-Beta = 0.62
unhealthy unhealthy 11
2 2
i) i)
[ [
=] >
= =
healthy S} 14 healthy 6 11
unhealthy healthy unhealthy healthy
Predicted label Predicted label

Figure 5. The confusion matrices represent the best InceptionTime models for healthi-

ness preference predictions within the first 25 (left) and 45 (right) seconds.

The best model for the entire prediction horizon of 45 seconds (Fg—; 5 = 0.62) did not
use the full 45 seconds. It performed best when considering the time series from second 7 to

43, with a step size of 9.0 seconds. This model correctly classified 87.05% of the unhealthy
choices and 64.70% of the healthy choices.
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The model for the shorter prediction horizon of 25 seconds does not perform much worse
overall (61.17% correct unhealthy classification and 82.35% correct healthy classification). It
achieved an Fg_; 5 score of 0.53. We remind the reader that with a beta of 1.5, we value
recall higher than precision, i.e., finding most of the healthy choices has priority. This model
considered the period from second 4 to 24 as a time series, using a start-stop interval of [4;
24], and a step size of 1.0 second. It even correctly classified more healthy choices correctly
compared to the best model for the 45-second prediction horizon.

In contrast, the best performing XGBoost model achieved an Fg_; 5 score of 0.48, using a
start-stop interval of [0; 38]. It correctly classified 90.5% of the unhealthy choices but only
47.1% of the healthy choices. With respect to the prediction horizon of 25 seconds, the best
XGBoost model performed slightly worse with an Fg_, 5 score of 0.42, using a start-stop in-
terval of [5; 21].

In Figure 6, we provide information about the effect of different start and stop values on
the maximum Fj classification performance. The left plot shows the average effect of differ-
ent start values. For our data, starting in second 5 results in the best average Fg value. As
expected, a decrease in performance occurs when a long onset duration is omitted before
feeding the model. The right plot shows the average impact of different stop values with a
peak at second 30. The positive trend for later stop values is also plausible, as more infor-

mation becomes available over time.

0.290 0.295
0.288 0.290
Q
@ 0.284 rget_col
w healthy 0.280
0.282
0.275
0.280
0.278 0.270
0.0 2.5 5.0 7.5 10.0 125 15.0 20 30 40
Start value in Sec. Stop value in Sec.

Figure 6. A timeline showing the average F-Beta value for healthiness preferences pre-

dictions regarding all evaluated start and stop values.
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2.5 Discussion

Although the amount of training data we used was limited and the class distribution im-
balanced, our work demonstrates a way to use gaze behavior, in our case the extracted fixa-
tions and gaze targets, as input for recommender systems. With the algorithmic adjustments
regarding the misclassification of the majority class, we can clearly answer our research
question. Yes, with reasonable performance in relation to the limited amount of data, we
can identify customers who buy healthy products early during their decision-making process
in a virtual commerce scenario using the InceptionTime deep learning approach. However,
we acknowledge that current classification rates are not production ready and continuous
model improvement and data collection are required to eventually allow for accurate predic-
tions.

Our main aim was to correctly classify as many samples of the minority class (healthy
choices) as possible during the evaluation phase of the decision processes. For the given da-
ta set, our results suggest that a time series-based approach like InceptionTime is a more
appropriate classifier compared to the shallow XGBoost method. The InceptionTime model
with a 1.0 second step size and a start-stop interval of [4; 24] is a promising predictor for
healthy and unhealthy product choices early in the decision process. This model showed that
focal loss and the Fg metric are effective measures to cope with the class imbalance inherent
to the data set. It achieved the highest Fg_, 5 score of 0.53 in our evaluation and correctly
classified most of the healthy choices (14 out of 17) while generating nudges candidates (a
fraction of customers with unhealthy choices, 33 out of 87). The extent of candidate-
generation could be adjusted by the B parameter for the evaluation metric (in our case we
chose B=1.5 and argue that it was a good choice because the amount of nudge candidate
seems to be appropriate).

The best XGBoost model achieved an Fp_ 5 score of 0.48 in our evaluation. It correctly
classified less than half of the healthy choices correctly (8 out of 17) and generated only a
small number of nudge candidates (8 out of 87). One reason for the lower performance
could be the fact that the scikit-learn implementation of XGBoost does offer a focal loss
function. However, recently Wang et al. (2020) implemented a focal loss function for the
XGBoost algorithm that may serve as drop-in replacement in scikit-learn. A comparison be-

tween InceptionTime and an XGBoost model with implemented focal losses might offer a
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more equitable benchmark and could potentially alter the results' significance. The XGBoost
model could also benefit from advanced sampling techniques, such as creating synthetic
samples with small deviations from the real observations (Chawla et al. 2002), but this is
beyond the scope of this research.

Regarding start values, the best InceptionTime models started early for both the 45 and
the 25 second prediction horizon (second 4 and 7, respectively). Thus, it seems advisable to
start the time series possibly early. Another viable option may be to decide on an individual
case basis when the orientation phase ends, e.g., by detecting the gaze pattern which repre-
sents the first comparison of two products (Peukert et al. 2020). In terms of stop values, the
results unsurprisingly exhibit a positive linear trend for the maximum Fg score, i.e., an in-
crease of performance with the duration of the prediction horizon. However, the graph
shows a lot of variances around second 25, 30, and 40 and it might be counterintuitive that
for the stop values after second 40, the maximum Fg values mainly decrease. For earlier stop
values, our results show that the prediction quality can remain relatively good, e.g., when
stopping after 24 seconds. The corresponding InceptionTime model correctly classified only
one healthy customer less (out of 17) than the best InceptionTime model which had access
to additional 16 seconds of ET data of the decision processes. This further supports the im-
portance of the early decision phase for the correct classification of healthy customers.

An open question remains the choice of a possibly ideal step size. We evaluated many dif-
ferent step values, which cost a lot of (computation) time and energy. Finding and validating
a better theoretical foundation, to explain for what reasons a certain overlapping technique
should be applied, could prove very helpful.

As theoretical contribution, our study confirms that leveraging a complete time series of
ET data and feed it into a convolutional network can be superior to treating the ET data as
cross-sectional data. However, the performance gain in comparison to a basic XGBoost
model is only a first proof of concept and both the baseline and the classification model can
further improve.

Before closing, we reflect on ethical considerations, particularly with regard the use of our
classification model as input for recommender and other context-aware Al systems. We
used gaze information of our participants to infer their willingness to buy healthy food and
prioritized healthy purchases. In the design of our model, we accepted a bias towards

healthy classification, what may lead to a nudge for a certain fraction of customers who
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would not necessarily appreciate suggestions for a healthy product. We argue that such a
nudge would be ethically valid, as it fosters socially desired behavior. However, there is an
ongoing debate in what situations nudging is desirable and when it should be avoided alto-
gether (Hausman and Welch 2010). In any case, “[c]hoice architecture, both good and bad, is
pervasive and unavoidable, and it greatly affects our decisions.” (Thaler and Sunstein 2021,
p. 252).

From a technical standpoint, our study suggests that time series classification enables re-
al-time feature generation for recommender systems using gaze patterns. Our results indi-
cate that the longitudinal point of view offers more relevant information than aggregations
to statistical moments that span over the whole decision period. We acknowledge that fur-
ther research and validation are needed to improve the reliability and generalizability of our
findings. Nonetheless, we hope that the presented approach encourages practitioners to
integrate recommender systems in virtual commerce environments. From our point of view,
it is only a question of time until we experience various (most likely artificial intelligence as-
sisted) tools which support and improve healthy food choices based on individual sensor
data. Overall, the use of suitable deep learning models, such as InceptionTime, could poten-
tially change the state-of-the-art for developing personalized interventions. In combination
with large language models, time series classification and cutting-edge deep learning meth-
ods are likely to transform user assistance as we know it today. Researchers and practition-
ers might think about further contexts beyond classic collaborative filtering, such as personal
trainers and instructors, medical advisors, psychotherapeutic treatments, and more. The
presented approach could be applied everywhere where learning about users' preferences
or their decision processes in general can be helpful. Therefore, it seems advisable to con-

tinue with data acquisition, model evaluation, and workflow integration.

2.6 Summary and Outlook

We proposed to use an InceptionTime classifier to infer customer preferences during the
evaluation phase of customer decision processes using gaze patterns. Our focus was on clas-
sifying customers who buy healthy products in a VR setup. The results show that Inception-
Time, in combination with class imbalance measures, can outperform a shallow gradient
boosting model in classifying healthy purchase decisions while generating candidates for

healthy food nudges.
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The main limitation of this study is the fact that our sample consists of only 516 purchase
decisions, of which only 15.1% were made for healthy products. Deep learning models are
typically trained on much larger datasets (Szegedy et al. 2016), and we believe that the full
potential of deep time series classification approaches will remain unexplored until such a
large dataset becomes (publicly) available. However, in order to collect such a dataset, the
legal consensus regarding privacy concerns for ET data needs to be solidified. Another limita-
tion of this study is that we only considered product labels (the most visually salient infor-
mation) to classify products as unhealthy or healthy when defining the ground truth. Future
research could use more fine-grained information, such as ingredient lists and nutritional
tables. With detailed information about a product's composition, recommendations could
take additional aspects into account. A highly relevant example is the detection of allergies,
e.g., many people are allergic to nuts. Consumers could decide whether to hide such prod-
ucts altogether or receive a multi-sensory warning when they focus on a critical product.

Overall, we see several avenues for future virtual commerce focused research. One prom-
inent concern is the treatment of privacy issues. Deliberate actions, such as body move-
ments or use of voice, can be controlled by the customers. In contrast, the gaze as such is
less under consumer control and fundamental to decision-making. ET data can identify indi-
viduals and might reveal unwanted personal aspects (Cantoni et al. 2018). Thus, research
should invent, evaluate, and reflect on different suitable (pseudo) anonymization techniques
(Steil et al. 2019). Privacy research enables device vendors and digital commerce providers
to avoid pitfalls and fosters trust among customers. The nudge aspect of this work is another
route to follow. Healthiness is only one aspect of socially desirable behavior but there are
further areas, such as sustainable consumption, which could be investigated by further re-
search.

Regarding data collection, upcoming studies should include a broader variety of available
information. Pupillometry and additional bio sensors seem to be a promising source for addi-
tional input features (Halbig and Latoschik 2021). Furthermore, time series classification
evolves quickly and new classifiers emerge frequently, e.g., InceptionFCN (Usmankhujaev et
al. 2021) or TapNet (Zhang et al. 2020). These models may have the potential to yield better
classification rates and should be compared with the presented results.

Future research should predict further dependent variables and showcase a real recom-

mendation pipeline. In addition to healthy products, we argue that brand and flavor prefer-
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ences are particularly interesting. Such a follow-up study should rethink the large-scale hy-
perparameter searches. These searches do not necessarily enumerate all presented start
and stop value combinations as presented in this study. Instead, it should benchmark differ-
ent algorithmic design aspects, like predicting preferences for new customers only or limiting
the feature set, which would provide further managerial insights. Next, a follow up should
introduce a better baseline, e.g., by comparing InceptionTime with previously mentioned
deep learning time series classification methods. Overall, we suggest iterative improvements
by means of ongoing experiments with the latest sensor technology available, such as elec-
troencephalography (event related potentials), facial features, body posture, pupil dilation,
and maybe functional near-infrared spectroscopy (fNIRS). With all measures combined, we
expect the predictive performance and validity to improve significantly (unfortunately, the
same is true for complexity). From our perspective, a long-term goal should be to hone a
publicly available machine learning pipeline, similar to the presented one, and ultimately
showcase it as real-time feature generator for a recommender system in real virtual com-

merce setups.
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3 Paper B: Consumer Decisions in Virtual Commerce: Good Help-
timing and its Prediction based on Cognitive Load
Tobias Weil8 and Jella Pfeiffer

Abstract

The retail sector is steadily moving towards virtual commerce (v-commerce) and the pro-
cess has recently gained momentum. With the latest developments in headset technology
and the rise of artificial intelligence, virtual shopping becomes relevant for an increasing
number of products. In this paper, we present a study that combines consumer behavior
research, eye tracking, electrocardiography, machine learning, and the application of virtual
reality. Fifty participants were invited to experience a virtual scenario, perform multiple
mentally demanding tasks, and make a purchase decision for a product from one of two dif-
ferent product categories. In a post-hoc video analysis based on the first-person view, partic-
ipants determined different points in time when they would have appreciated help from an
algorithmic user assistance system or a digital human agent. Our statistical analysis suggests
that the desired help timing depends on the product category. For fast-moving consumer
goods, algorithmic help was requested particularly early. Furthermore, we collected eye
tracking and electrocardiographic data to build and evaluate a predictive classification model
that differentiates between three levels of cognitive load. The trained machine learning al-
gorithm aims to classify cognitive load during decision-making, which may indicate the right
time to offer help. Our findings provide evidence that particularly eye movements allow ser-
vice providers to determine a good moment to approach consumers during their shopping

experience.

Keywords: Consumer Behavior, Decision Making, Eye Tracking, Electrocardiography, Ma-

chine Learning, Metaverse, Virtual Commerce, Virtual Reality
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3.1 Introduction

The popularity of online shopping has transformed traditional brick-and-mortar stores in-
to highly competitive virtual marketplaces (Bourlakis et al. 2009). While technological ad-
vances provide new opportunities for consumers to visualize and experience their environ-
ment, new business rules pose challenges for retailers seeking to provide engaging and
meaningful experiences (Reinartz et al. 2019). With the proliferation of immersive technolo-
gies such as virtual reality (VR), the idea of the Metaverse continues to fascinate many peo-
ple. For immersive shopping scenarios, knowledge about cognitive processes can help to
design highly personalized user assistance systems (UAS). Decision support systems are an
elemental tool for retailers that can severely impact their business success (Shim et al.
2002). As a subclass, UAS can be seen as joint element which “bridge[s] the gap between the
system’s functionalities and the human’s individual capabilities with the goal of positively
influencing task outcomes” (Morana et al. 2020b, p. 189).

Due to the need for enhanced consumer experiences, several studies suggest that the
provision of personalized user assistance will become highly relevant in v-commerce scenar-
ios (Guo and Elgendi 2013; Zhang et al. 2013; Chen and Yang 2022). UAS in e- and v-
commerce include conversational agents (Hefler et al. 2022), recommendation systems
(Xiao and Benbasat 2007), and virtual assistants (Raut et al. 2023). In general, user assistance
leverages analytics, data, and technology to help consumers make informed decisions about
various aspects of their purchases. Examples of algorithmic help offerings include displaying
the most relevant product reviews from other consumers (Pan and Zhang 2011) or assisting
with interactive decision aids (Haubl and Trifts 2000; Pfeiffer 2011).

With the ability to collect data on neurophysiological responses in VR, new opportunities
arise to create intelligent UAS that adapt to the individual’s state. Machine learning (ML)
plays a crucial role when building these new UAS as it provides the basis for an artificial intel-
ligence (Al) steering the system. An intelligent, ML-based, adaptive system can learn about
consumer search motives (Pfeiffer et al. 2020) using eye tracking (ET). Among latest VR
headsets, the most common biosensors are ET cameras. For this reason, we utilize ET as the
main neurophysiological sensor to detect visual attention and predict cognitive load. How-
ever, recent research-grade VR headsets offer further data sources, like electrocardiographic

(ECG) sensors, and we forecast that a variety of different sensors will be available, as well as
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additional wearables. For example, electroencephalography (EEG) earbuds (Athavipach et al.
2019) for which a major tech company recently patented a design for.

One aspect that might help to create a good, highly personalized user experience (and
therefore impact the success of these sales interactions) is the time when consumer assis-
tance is invoked (Friemel et al. 2018). Adequate timing can influence consumers’ attention
(Bailey and Konstan 2006), perceived relevance, trust, urgency, and could be an enabler for
UAS providers to beat the competition (Meurisch et al. 2020). Peukert et al. (2020) outlined
how important it is to display a UAS with a good timing. They proposed a decision-phase-
based detection algorithm and compared it with previously suggested decision phase models
(Gidlof et al. 2013; Russo and Leclerc 1994). However, they used simple gaze pattern rules to
determine the phases, such as the first refixation on a product. A good timing to approach a
consumer, however, depends on several factors, including their mental state (e.g., in the
form of cognitive overload, personality, and habitual purchasing patterns). By carefully tim-
ing interactions, we claim that both consumers and providers can benefit due to the avoid-
ance of dissonance between intended help offering and, in the worst case, perceived annoy-
ance. While further previous work focused on assistance timing in generic software interface
tasks, like finding appropriate software functionalities to alter an image (Ginon et al. 2016),
this study is particularly geared towards the consumer decision-making context in v-
commerce.

In this paper, we investigate cognitive load and its capability as an indicator to determine
a good timing to engage with consumers in a shopping scenario. Previous work has identified
cognitive load as a key mental state for decision-making (Deck and Jahedi 2015). In line with
findings from the educational domain (Vaessen et al. 2014), we hypothesize that high levels
of cognitive load can make it more difficult for consumers to understand and solve decision
problems on their own, leading them to seek help (in form of an algorithmic support system
or a digital human agent, i.e., a human sales representative controlling an avatar in the vir-
tual shopping environment). Low levels of cognitive load might increase consumers’ confi-
dence and ability to solve problems independently, reducing the likelihood that they seek or
appreciate help but rather want to browse the store independently. We argue that by esti-
mating the cognitive load level during a consumer’s purchase decision, it might be possible
to determine a good timing to start an interaction. To account for varying levels of product

knowledge, we employ two distinct products from two different categories: a fast-moving
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consumer good and a technology product. We expect differences between the product cat-
egories regarding desired help timing. Thus, the research questions read as follows:

1) When is the desired help timing for algorithmic user assistance compared to the
desired help timing for a digital human agent in different shopping scenarios?

2) How does product knowledge influence the desired help timing?

3) Is desired help timing related to cognitive load and if yes, how can cognitive load
be used to determine a good intervention timing?

We investigate these questions in an experimental VR environment, which gives our study
particular relevance in the light of latest developments in the retail domain towards v-
commerce. VR can improve consumer experiences (Moghaddasi et al. 2021) and offer high
external validity while maintaining experimental control (MeilRner et al. 2019). Furthermore,
the used high-end VR headset allows us to collect gaze patterns and pupillometry in an un-
obtrusive and precise way. To answer our questions, we draw from two data sources. Both,
ET and ECG, serve as an indicator of cognitive load (Haapalainen et al. 2010). This paper
mainly builds upon two works. First, Peukert et al. (2020) have used ET to distinguish deci-
sion phases by using simple gaze patterns. These phases might indicate a good point in time
when users seek help but a connection between decision phases and help timing was not
investigated in their paper. Second, Pfeiffer et al. (2020) have estimated search motives
based on fixations and their statistical moments. To complement the fixation data, we addi-
tionally include blinks, saccades, and pupillometry into the feature set. Additionally, we use
ECG as secondary neuro-physiological sensor. We extend this existing stream of literature on
consumer behavior in VR by focusing on the desired support type and good intervention
timing.

Our contributions are twofold. First, we show that desired help timing depends on wheth-
er the help is provided by an algorithmic user assistance system or a digital human agent.
The desired help timing also depends on the product category being purchased. As a result,
when designing good shopping assistance, companies should be aware of this heterogeneity
and strive for a high degree of personalization and context-awareness of the shopping situa-
tion. Second, we investigate cognitive load as an indicator to estimate the timing of assis-

tance by using ET and ECG. The study demonstrates how ET and ECG can be used as features
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for shallow and interpretable ML models to predict optimal assistance offers. Overall, this
article emphasizes the transformative nature of v-commerce and the high relevance of lev-
eraging the recently available extended set of biosensors. We provide valuable practical
guidance on how to approach the v-commerce transition and take advantage of the techno-

logical opportunities.

3.2 Related Work

3.2.1 Cognitive Load

The mental effort or capacity required to process and understand information is referred
to as Cognitive Load (CL). Originating in psychology and education, Cognitive Load Theory
(CLT) explains how the human brain processes information during learning and problem-
solving (Plass et al. 2010; Sweller 2011). CLT suggests that humans have a limited amount of
mental capacity (Miller 1956) and that the difficulty of a task can affect how much of this
capacity it occupies. Furthermore, CLT can be applied to decision-making when choosing
among several options (Deck and Jahedi 2015). For measuring CL, a variety of biosensors
and ML techniques are available (Seitz and Maedche 2022). To minimize the negative impact
of CL on decision-making, it is a viable option to simplify decision-making processes and re-
duce the amount of information that must be processed at a time (Todd and Benbasat
1994). Today’s software solutions can reduce CL and improve decision making by providing
help from a virtual agent (Brachten et al. 2020). Another option is breaking down over-
whelming decision-making tasks into smaller, more manageable parts. Still, task optimization
and atomization are no panacea. Even if the amount of options is limited, empirical results
suggest that high CL levels can negatively impact the quality of decision-making (Allen et al.
2014; Dewitte et al. 2005). These studies consistently showed how a high CL level can lead to
an increased likelihood of making errors in different task arrangements. Given this critical
relation between CL and increased error rates, it is not surprising that marketing and shop-
ping contexts are important domains to apply CLT (Schmutz et al. 2010; Grzyb et al. 2018;
Wang et al. 2014). For example, a CLT-informed UAS can improve consumers’ abilities to
understand and process information about a product or service they consider buying. By
reducing CL, product vendors can foster a positive shopping experience for their consumers.

Building on the CLT principles, shop providers can actively design a UAS that increases their
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consumers’ motivation and ability to seek help when needed. By making it easier for con-
sumers to seek help when needed, or even offering the required help with perfect timing,
companies can improve consumer satisfaction and reduce costs associated with providing
assistance (Caruelle et al. 2023). Overall, CLT can provide a basis for understanding how dif-
ferent levels of CL influence consumers’ motivation and ability to seek help. We hypothesize
that after an initial exploration/orientation phase, consumers want to mitigate the imposed
CL burden and value customer support. We further believe that CL can help to identify the
moment when consumers engage with the product, viewing and comparing attributes or
details. Such behavior indicates an increased likelihood of open questions. These questions

could be answered by an algorithmic support system or a digital human agent.

3.2.2 Eye Tracking

Gaze patterns are suitable to track visual attention (Duchowski 2017), but their analysis
relies on the eye-mind hypothesis by Just and Carpenter (1980), which assumes that human
cognitive processes can be observed by their associated gaze patterns. However, it is evident
that individuals can deliberately look at a certain position while thinking about something
else (Anderson et al. 2004). Nonetheless, experimental findings indicate the validity of the
eye-mind hypothesis in numerous scenarios (Holmqvist et al. 2011). Important movement-
related gaze metrics are fixations and saccades. A fixation is a stationary state of the eyes
and can last from milliseconds to seconds, while saccades are rapid eye movements be-
tween fixations.

Pupillometry investigates the changes in pupil dilation and frequently serves as estimator
for CL (Kahneman 1973; Holmqvist et al. 2011; Hess and Polt 1964). In natural environments,
pupillometry is not reliable for determining CL because small deviations in the lighting condi-
tions have a strong impact on pupil dilation (Laeng et al. 2012). In a virtual environment,
experienced by an individual using a VR headset, lighting confounds can be mitigated be-

cause the closed HMD cover offers fully controllable scene lighting.

3.2.3 Electrocardiography
ECG records the electrical activity of the heart, which emits a group of waves called PQRST
(Goy 2013). Research has applied ECG to investigate various aspects of consumer behavior

and is commonly used in combination with other biometric tools (Harris et al. 2018). Human-
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computer interaction research assesses additional factors, such as the usability of user inter-
face design (Lee and Seo 2010) and emotional engagement with presented information
(Ferdinando et al. 2016). ECG can serve as an indicator for CL (Haapalainen et al. 2010;
Hughes et al. 2019). Data collection is typically performed with high frequency using elec-

trodes that are attached to the skin.

3.2.4 Virtual Reality

In VR, the real-world environment is replaced as comprehensively as possible. A main goal
of VR is to create realistic but completely virtual experiences with a high level of (tele-
)presence for the users (Cummings and Bailenson 2016). An early head-mounted display
(HMD), as it is common today, was already developed by Sutherland (1965). Another option
to create virtual spaces is a CAVE automatic virtual environment (a recursive acronym), a
cube-shaped room with projections on its walls (Cruz-Neira et al. 1992). Today, HMDs are
common, and some models can even show mixed reality, which means everything on a spec-
trum from slightly augmented to fully immersive experiences. It is possible to combine an
HMD with a variety of different sensors and cameras, particularly ET (Pfeiffer et al. 2020),
which leads to many interesting research opportunities. Moreover, VR mitigates the trade-
off between experimental control and ecological validity (MeiBner et al. 2019).

VR has changed the landscape of v-commerce, ushering in a new era of immersive and
personalized shopping experiences (Evans and Wurster 1999). The technology might trans-
form the way consumers interact with products and purchase them online by providing a
more engaging and lifelike representation. VR showrooms allow customers to view products
in three dimensions, enabling a more informed decision-making process. In addition, VR has
enhanced the social aspect of v-commerce through shared virtual spaces where friends or
family can shop together and share opinions in real time (Zhang et al. 2014). A recent review
by Branca et al. (2023) provides a comprehensive overview of different literature streams
that address v-commerce. The authors identify four key research streams: customers, prod-
ucts, product testing, and VR compared to other conditions. As our study mainly focuses on
desired help timing, it fits into the customer category. However, we propose to introduce a
fifth label called sales agents which covers related research. We argue that the interface be-
tween provider and consumer is a key success factor which needs increased attention. Table

2 provides a list of selected previous customer behavior experiments in VR. It briefly de-
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scribes the experimental setups, contributions, and allows the reader to understand the con-

tribution and positioning of our article.

Table 2. Related VR experiment categorization.

Study Setup Contributions
Bigné et N=41 This study investigates brand preferences for fast food products
al. (2016) CAVE and suggests that high attention to a brand and slow eye move-
ET data ments between brands lead to additional brand purchases. The
Spatial data applied method consists of regressions with aggregated parame-
Questionnaire ters related to the entire decision-making process.
Martinez- N=178 The authors compare the effectiveness of different VR formats
Navarro  HMD and devices. They find that virtual stores are more effective in
et al. Questionnaire generating cognitive and conative responses. They apply a struc-
(2019) tural equation model that suggests a dual path via brand recall
and presence which both influence consumers’ purchase inten-
tion in virtual stores.
MeiBner N=132 This article compares high immersive (using a HMD) and low
et al. HMD immersive shopping environments (using a desktop computer)
(2020) Questionnaire and examines consumers’ variety-seeking, price sensitivity, and
choice satisfaction. In an incentive-aligned choice experiment,
participants make repeated purchase decisions for cereal prod-
ucts. The statistical analysis suggests that consumers are less
price sensitive and seek more variety in highly immersive envi-
ronments.
Pfeiffer N=50 The authors investigate two classic shopping motives: goal-
et al. CAVE directed search and exploratory browsing. They compare deci-
(2020) ET data sions in a real-world supermarket with decisions in a virtual reali-
Questionnaire ty supermarket. They collect ET data on which they train three
shallow ML models. They found that an ensemble method can
classify the two motives with about 90% accuracy.
Alzayat N = {48, 35} Using two VR stages and an Amazon mturk questionnaire, the
and Lee HMD authors investigate the differences in hedonic purchase value
(2021) Questionnaire between a VR retail environment and a website. Their analysis
comprises three structural equation models. The results suggest
that a VR retail environment is more appropriate for products
that are perceived as an extension of the body (e.g., tools) rather
than a representation of the body (e.g., clothing).
Huang et N=80 This article focuses on search behavior, which is involved in the
al. (2021) HMD evaluation phase of each decision-making process. The authors

Brain activity

investigate the congruence or incongruence between text and
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Park and
Kim
(2021)

Schnack
et al.
(2021)

Harz et
al. (2022)

Questionnaire

N =196
HMD
Questionnaire

N =36

HMD

EEG data
Spatial data
Purchase data
Questionnaire

N =210
HMD
Questionnaire

color of flavor labels on product packaging. They provide evi-
dence for a color-flavor incongruence effect in visual search and
correlate it to the violation of user expectations. The method
involves subsequent VR and fMRI phases, which the authors ana-
lyze using multiple regressions and regional homogeneity anal-
yses, respectively.

This research examines how offering a virtual try-on in Aug-
mented Reality, a 3D store on a desktop computer, and a VR
store affect consumers' purchase intentions. The study also ana-
lyzes how thinking more deeply about an item influences the
decision-making process in different shopping scenarios (search-
ing versus browsing). Results indicate that purchase intentions
are highest when participants browse in the VR condition. A
moderated mediation analysis supports the hypothesis that cog-
nitive elaboration mediates purchase intentions for those con-
sumers in the browsing mode, while such a mediating effect was
absent in the searching mode.

This study compares instant teleportation with motion-tracked
walking in VR and investigates whether different locomotion
techniques correlate with altered shopping behavior. Using a
split-sample experimental design, the authors apply electroen-
cephalography (EEG) to track emotional states such as stress. In
the scenario, participants experience a VR grocery store. Overall,
the results suggest that different locomotion techniques have no
impact on the consumers’ emotional state and engagement.
However, different spatial movement patterns are noticeable
when comparing the different conditions.

The authors report on a combination of a real-world field study
which is followed by a laboratory experiment. They examine how
durable goods companies can use VR for new product develop-
ment, and how VR can improve pre-launch sales forecasting. One
of the three experimental conditions takes place in VR, the other
conditions take place online and in the real world. The analysis of
variances suggests that sales forecasting in VR provides the most
accurate predictions compared to the other conditions. Moreo-
ver, it confirms the first evidence of the field study that VR corre-
lates with a more consistent consumer behavior, and that virtual
reality might create superior behavioral consistency compared to
the real world.
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Ourwork N =50 In contrast to previous work, our study focuses on the desired
HMD help timing in a VR scenario for an algorithmic UAS versus a digi-
ET data tal human agent. As second dimension, we compare technical
ECG data products (3D printers) with fast-moving consumer goods (wash-

Questionnaire ing powders). We present the statistical analysis of our ques-
tionnaire and apply a machine learning approach to identify a
good intervention timing. During our experiment, participants
solve CL inducing tasks before making a purchase decision. ET
and ECG provide the features for an ML classifier. Algorithmic
help was requested particularly early for the washing powder.
The results further indicate that CL-based classification works for
the desired help timing of an algorithmic UAS but not for a digital
human agent. The approach could be refined to invoke an Al
agent based on a fine-tuned LLM, who has in-depth product
knowledge.

3.3 Method

3.3.1 Experimental Design

The experimental setup was based on a virtual showroom in VR. Participants performed
generic CL tasks of three difficulty levels and a subsequent purchase decision. The experi-
ment focused on the utilitarian aspect of consumer behavior, as we asked participants to
make decisions based on a set of criteria, leaving little room for their own hedonic motives.
A web-based questionnaire on a desktop computer complemented the VR recordings. For all
experiment sessions, we collected ET and ECG data.

To answer the first research question, we examined consumers' desired help timing for an
algorithmic UAS versus a digital human agent. To identify potential differences across prod-
uct categories, we used two product sets of four items. One set represented technology
products (3D printers) and the other set represented fast-moving consumer goods (washing
powders). We asked participants to identify good intervention timings for the two different
types of help providers, an algorithmic UAS and a digital human agent, because participants
might perceive relevant differences for these help providers. We argue that an algorithmic
UAS may appear earlier during a decision-making process compared to a digital human agent
because it is comparatively inexpensive. For the intervention of a digital human agent, tim-

ing is critical because it translates into substantial costs for human resources on the seller’s
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side. Providers should therefore be confident that an engagement is desired and that it takes
place at the appropriate time.

As an exploratory aspect related to the first research question, we also wanted to identify
the specific desired help type for algorithmic user assistance. In other words, do users prefer
interactive decision aids, recommendations, or other algorithmic help types? This insight
may guide practitioners in deciding which system type to implement in a certain scenario.

To investigate the second research question, we compared participants’ product
knowledge for the different product categories and examined its relationship with desired
help times. We expected low product knowledge for the 3D printers because they are niche
products, whereas a broad range of participants should be familiar with different washing
powders. However, it was not clear what effect this (un-)familiarity would have on desired
help times.

To control for possible confounding, we collected the participants’ demographic infor-
mation, personality traits, and their general attitude toward sales representatives. We also
asked the participants about their product involvement but expected little difference be-
cause the monetary incentive for solving the purchase task was the same in both the wash-
ing powder and 3D printer scenarios.

To answer our third research question which aims to increase the understanding of CL in
relation to the point in time when consumers want help, we measured CL levels that partici-
pants experienced when solving three generic tasks of low, middle, and high complexity be-
fore transitioning to the actual purchase task. To verify the difficulty levels, we controlled for
subjectively perceived complexity during the generic tasks. Using the recorded ET and ECG
data, we trained an XGBoost model to predict the CL level during a short period prior to the
desired help timing.

All virtual scenes were implemented using the Unity 2021.3 game engine. Participants ex-
perienced our virtual environments using a Varjo VR 3 HMD with Valve Index controllers.
This headset offered high-frequency ET capability with a sampling rate of up to 200 Hz, and
its display resolution of 2880x2720 pixels per eye led to high visual immersion. The ET sensor
was calibrated at the beginning of each experiment stage using a five-dot calibration proto-
col. For ECG recording, a wireless bioPLUX device captured signals throughout the experi-
ment with a sampling rate of 1000 Hz. To be able to clarify possible confounds post-hoc dur-

ing data analysis, we additionally recorded all experimental sessions on video using a room
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camera. Overall, the experiment followed a between-subjects design (regarding the two
product categories) and included several questionnaire parts which alternated with the VR
stages. Mandatory VR breaks for the questionnaires had additionally reduced the risk of cy-

bersickness (Davis et al. 2014) and exhaustion of the participants within the VR environment.

3.3.2 Participants

Our self-hosted online registration platform (Bock et al. 2014) helped to recruit partici-
pants and manage the experiment sessions. Additionally, we actively solicited participation
from students on our campus. Participation requirements were an age between 18 and 65
years and good command of English and German. Furthermore, we only accepted partici-
pants with normal or corrected-to-normal vision. Participation compensation was 10 Euros
fixed plus a performance-based component of up to 5.5 Euros. After arriving at the lab, par-
ticipants signed a consent form. It ensured the participants’ basic knowledge of the experi-
mental procedure, informed them that the experiment complied with ethical standards, and
required them to grant the permission to publish their pseudonymized data as an open-

source dataset.

3.3.3 Behavioral Measurements

We measured all questionnaire items on a 7-point Likert scale. In terms of demographics,
we tracked participants’ age, gender, and occupation. To estimate personality traits, we
used the BFI-10 short scale (Rammstedt et al. 2013) which allows for the evaluation of per-
sonality traits with acceptable validity in a compact manner. We measured the general de-
sire to interact with a salesperson using eight items validated by Lee and Dubinsky (2017). To
collect self-assessments about CL, for both the multitasking-stage and decision-stage, we
asked participants to answer the six item NASA Task Load Index (TLX) questionnaire (Hart
and Staveland 1988; Hart 2006). Overall, four TLX batteries were collected per participant,
one for each of the three generic CL task difficulty levels and one for the purchase decision.
The product knowledge scale, consisting of three items, was adapted from Park and Moon
(2003) to fit the presented products (see appendix). Moreover, the questions regarding par-

ticipants’ product involvement comprised 20 bipolar items (Zaichkowsky 1985).
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3.3.4 Neuro-Physiological Measurements

To generate features for the ML model from the collected sensor data, we aggregated the
raw ET and ECG recordings. The extracted features are listed in the supplemental Table 7 for
ET features, and in supplemental Table 8 for ECG features.

For the ET data, we utilized both gaze-based metrics and pupillometry. Gaze events,
namely fixations, saccades, and blinks were created using a velocity-based algorithmic ap-
proach (I-VT) as described by Salvucci and Goldberg (2000). For saccades, we set 50°/second
as the lower angular speed threshold (Holmqgvist et al. 2011). We limited fixation durations
to 0.1 seconds as the lower threshold and 10 seconds as the upper threshold (Duchowski
2017). After creating the gaze events, we aggregated statistical moments to determine if
attention was directed to different areas of interest (AOI, for example a product) and how
often attention shifted between different AOIs. For pupillometry, we used the pupil-iris ratio
of the dominant eye and complemented the gaze events with this information.

Using the raw ECG data, we extracted time- and frequency-domain-related features that
covered different aspects of the heart rate and its variability (HRV) in linear and nonlinear
representations (Xiong et al. 2020; Chanel et al. 2019; Pham et al. 2021). Regarding ECG fea-
ture selection, we rely on a recent review that covers the “most up-to-date and commonly
used HRV indices” by Pham et al. (2021). Due to our relatively short task periods, some of
the common HRV measures could not be investigated, such as the standard deviations of
average heartbeat intervals (SDANN) which compare longer segments (by default 1, 2, and 5
minutes).

Overall, a crucial step for feature engineering was setting the time window size because it
determined how the features were aggregated. For the ET related features, we evaluated 6
different window sizes (3, 5, 7, 10, 15, 30 seconds, where 30 seconds is the full trial duration)
which yielded equally long segments without overlapping or artificial padding.

Further assumptions are necessary for the ET post-processing. An average fixation lasts
about 0.3 seconds (Holmquvist et al. 2011) and average blinks and saccades are even shorter.
Thus, we argue that 3 seconds yield enough data to calculate meaningful statistical moments
in many cases. Considering increasing window sizes makes sense because CL might not be
present from the onset of the task. Comparing different parts of a trial could yield a good

contrast, such as the first versus the second half of a trial.
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For ECG measurements, we only considered the full trial length (30-second windows). For
shorter periods, only a limited set of features is computable, such as heart rate variability
(HRV), while several features from the frequency domain and nonlinear domain suffer from

numeric instabilities.

3.3.5 Procedure

The experiment lasted approximately 80 minutes, and it consisted of five different stages,
as shown in Figure 7. The stages were streamlined with a web-based questionnaire on a
desktop computer which alternated with the VR scenes and guided participants through the
different stages from start to end. During the pre-stage, our participants completed an
onboarding procedure and answered general questions. A multitasking-stage followed in
which participants performed nine generic CL tasks (with three levels of complexity: easy,
medium, and hard). A decision stage followed, in which participants made a product pur-
chase to meet a list of given criteria. A video-analysis-stage followed during which partici-
pants retrospectively analyzed their first-person view during the purchase decision. A final
post-stage, in which participants went through our offboarding procedure, concluded the

experiment.

3.3.5.1 Pre-Stage

We assigned arriving participants randomly to one of two groups by flipping a coin and
started the corresponding questionnaire on the computer. In the subsequent decision-stage,
Group A was assigned to decide upon 3D printer products and Group B was assigned to
washing powder products. A welcome screen explained the general purpose and modalities
of the experiment. Before continuing, we asked the participant to read and sign our consent
form. Only after accepting the terms of the experiment, participants were asked to provide
demographic data, information about their personality traits, and to answer questions about
their general attitude towards salespersons. Next, we determined their dominant eye using
the Miles test (Miles 1929). For electrocardiographic data acquisition, we asked participants
to go to the restroom and to attach electrodes to their body according to a reference pic-
ture, and to connect them to the transmitter. We decided to triangulate the heart in a wide
triangle, spanning from the shoulders to the hip, to receive a high-quality signal that is ro-

bust to noise caused by body movements.
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Next, we explained the VR hardware, controller usage, ET calibration procedure, and the
upcoming task. Then we familiarized participants with movement, teleportation, and inter-
action using a training environment very similar to the subsequent task environments. The
training scene consisted of the same showroom which was later used for the CL and decision
environments. Participants were asked to use two in-world buttons which invoked the ap-
pearance of example models, one low-quality model with low polygon count and single-
colored texture and one high-quality model with high polygon count and high-fidelity tex-
ture. Additionally, participants were asked to interact with a menu that started a timer and

transitioned to the next stage after successful activation.

Random group X: Timing for
assignment . . . . Electrode
{— Task explanation — Task explanation — algorithmic ml T
| #(A) 3D Printers support in VR2
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Powder
VR2: Product ¥: Timina for
VR1a: Ball tracing evaluation and L € o
— — . — digital human H Debriefing
(3x) decision for (A) or sUDDOrt in VR2
| | Demographics (B) e
questionnaire
VR1b: Ball tracing NASA TLX .
. . X X Decision Phase
— and arithmetic — questionnaire — Shifts — Payment
Attitude towards (3x) for VR2
—  salespersons
questionnaire
\:'Rl‘(:: Ball 'tracmg, Prodnt
arithmetic and
[— — knowledge — Farewell

rotation tracing
BFI-10 (3x)
questionnaire

questionnaire

NASA TLX

| | questionnaire for | | invF:arI(\)t:lr::ttant
VRi2WR1band questionnaire

| | Dominant eye VR1c
detection
Desired decision
- support type
Electrode questionnaire
— attachment and
ECG test
VR Q: Training

envrionment

Figure 7. Experiment procedure.

3.3.5.2 Multitasking-Stage
To generate different generic CL levels, we designed a gamified CL task with three difficul-
ty levels, as shown in Figure 8. This task was inspired by the work of Siegel et al. (2021). It

consisted of three components — ball tracing, arithmetic, and rotation tracing. In the easy
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variant, participants had to trace one out of five moving balls. The target ball was colored
red for 10 seconds. Afterwards, the trial began, and the target ball changed its’ color to the
same gray as the other four balls. All five balls moved around pseudo-randomly within a
predefined area for 30 seconds. Finally, all balls stopped moving and displayed an identifying
number. Participants then had to press a button labeled with the corresponding number to

indicate which ball they considered as the target.

Figure 8. Multitasking VR environment.

A text message informed the participants whether the answer was correct or not, and the
task was reset after a short waiting time. The medium variant was more difficult as it includ-
ed the easy variant but additionally introduced an arithmetic component. To the right of the
ball tracing area, small pseudo-random numbers (ranging from -10 to 10) appeared sequen-
tially on the wall within a pseudo-random time interval and the participants had to aggre-
gate them, while still tracing the ball in parallel. At the end of each trial, a slider was pre-
sented with which the calculated sum could be entered. An additional text message in-
formed the participants whether the answer was correct or not. The hard variant was even
more difficult as it included the medium variant but additionally introduced a rotation track-
ing component. To the left of the ball tracing area, a spinning logo appeared which changed
its rotational direction between clockwise and counterclockwise within pseudo-random time
intervals. Participants had to count the amount of rotational direction changes, in addition

to the ball tracing and arithmetic components. After the 30 seconds of trial time, partici-
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pants saw an additional slider to enter the counted number of rotational direction changes.
All difficulty levels were repeated three times, and we incentivized the correct completion of
each trial by increasing participants’ performance-based extra payment by 0.5 Euro, if all
components of a trial were answered correctly. Before these real trials started, all partici-
pants performed a training round in which they experienced the hard variant but without
monetary incentive. During the training round, they could familiarize themselves with the
task and ask questions. However, repetition was not possible. Then they began with the easy
variant, followed by the medium and hard variant, until all nine trials were completed. Af-
terwards, participants took a VR break and continued the desktop-based questionnaire

which sequentially asked for their perceived task difficulty for all three levels.

3.3.5.3 Decision-Stage

Both groups were presented with different task descriptions to create a realistic situation.
Group A was asked to imagine being part of a board game designer team who needed a 3D
printer to evaluate their game design. Group B was asked to imagine being a member of a
residential community and being responsible for weekly grocery shopping which included
buying washing powder (see appendix for the exact wordings of both task descriptions). To
incentivize the decisions and increase external validity, participants had the chance to gain
one additional Euro performance-based participation compensation if their product choice
matched a previously determined team decision. This team decision was negotiated by a
group of five individuals in advance of the experimental sessions.

In the virtual environment, participants first saw a blackboard containing the require-
ments specified by their imaginary peers. We designed these requirements so that the diffi-
culty level matched among the groups (see supplemental Table 9). To this end, we chose
three easy and three hard decision criteria. We considered attributes as easy that were ob-
vious by looking at the product packaging or the product description from a distance. On the
other hand, we considered attributes as hard for which participants either had to interact
with the product (e.g., by starting or turning it) or needed further information to be able to
judge the product. An example of a required interaction is that the print quality of a 3D
printer could only be determined by pressing the print button and looking at the printed
object. An example of a criterion which needed more information is whether a washing

powder is environmentally friendly. This is because the roommates could have been looking
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for environmentally friendly packaging, environmentally friendly product ingredients, or
both. We believe that external help could be strongly appreciated to clarify the require-
ments for both groups.

To begin the decision phase after memorizing the requirements, participants had to press
a start button that concealed the requirements on the blackboard and displayed the prod-
ucts on a table behind them (refer to Figure 9 for Group A and Figure 10 for Group B). After
this, participants could approach and engage with the products. To make their decision, par-
ticipants of Group A had to choose the respective 3D printer name from a drop-down menu
and click a purchase button while participants of Group B had to put the desired washing
powder into a shopping cart next to the product table. After making a choice and detaching
the HMD, participants continued to answer questions about their product knowledge, prod-
uct involvement, task difficulty, and the preferred type of help for algorithmic user assis-
tance (from a list of five common algorithmic user assistance types as shown in the appen-

dix).

please make your purchase decision
after you evaluated the products!

—Purchase

"3D WS Explorer” i

price: 229,99 €

Figure 9. 3D printer decision VR environment.
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Figure 10. Washing powder decision VR environment.

3.3.5.4 Video-Analysis-Stage

During this stage, participants answered time-related questions about their decision
phase. Two questions regarding the desired timing for user assistance in the form of (X) an
algorithmic UAS and (Y) a digital human agent (for exact wordings, see supplemental online
material). These questions were displayed sequentially, and their order was randomized to
avoid possible confounds induced by any static order. To find the corresponding timestamps,
participants watched a video that showed their first-person view during the previous deci-
sion-stage and also displayed a gaze dot indicating their visual attention. Participants then
selected the most appropriate moment for the assistance to appear and entered the corre-

sponding timestamp in the questionnaire.

3.3.5.5 Post-Stage

We asked participants to go to the restroom and detach the ECG transmitter and elec-
trodes. Then we continued with a debriefing (explanations about the experiment’s purpose)
and answered questions. Finally, we issued the participants’ compensation and wished them

farewell.
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3.4 Results

The data analysis was performed in python 3.7 using neurokit2 0.2.3 (Makowski et al.
2021), scipy 1.7.3 (Virtanen et al. 2020), statsmodels 0.13.2 (Seabold and Perktold 2010),
and pingouin 0.5.3 (Vallat 2018). ML was performed in python 3.10 using scikit-learn 1.0.2
(Pedregosa et al. 2011) and XGBoost 1.7.1 (Chen and Guestrin 2016).

3.4.1 Sample and Demographics

A total of 62 participants were observed resulting in 50 complete samples with 24 individ-
uals in Group A (3D printers) and 26 individuals in Group B (washing powders). Regarding
occupation, 49 of these 50 participants were students and one was a university staff mem-
ber. Among the 12 discarded observations, one had to be excluded because of a recording
interruption of the eye tracker during the decision phase. Another observation was excluded
because the eye tracker was not able to calibrate, most likely due to a facial asymmetry of
the participant. The remaining ten discarded observations had to be excluded due to ECG
recording issues, particularly because of Bluetooth connection issues between the ECG
transmitter and the host computer. The mean age of the remaining 50 participants (29 fe-
male and 21 male) was 24.5 years (SD = 4.9). Their average participation compensation

amounted to 13.5 Euros (SD = 0.8).

3.4.2 Correlation of Neuro-physiological Features

We investigated correlations of ET and ECG metrics across different time windows for the
different experimental periods. As expected, there were no significant correlations between
the two sensors. The visualizations for the fixation duration over the different time windows
are shown in the supplemental on top. Shorter intervals naturally show correlations with
longer ones that comprise them. For example, the time windows from second 0 to 3 and
from 3 to 6 overlap largely with the window from 0 to 5. This results in the red lines of high
correlation in the fixation duration plot. While ET features were calculated for the interval
lengths (3, 5, 7, 10, 15, 30), the ECG features only comprised the 30-second interval because
shorter time windows would have been impractical for most HRV-based features. The bot-

tom part of Figure 13 shows the correlations between the HRV features for this interval.
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3.4.3 Attitude Towards Salespersons

To rule out possible confounds that could arise from different general attitudes toward
salespersons, we asked the participants several questions before the actual purchase deci-
sion. The internal consistency of the general salesperson attitude scale was acceptable
(Tavakol and Dennick 2011), measured by Cronbach’s Alpha of a = .76 and the mean rating
was 4 (SD = 1) where a high rating corresponds with a high desire to interact with salesper-
sons in general. A Shapiro-Wilk test indicated that the distribution of the mean rating did not
depart significantly from normality (W = 0.98, p = .73), a Bartlett test indicated homoscedas-
ticity (T = 0.17, p = .68), and a two-sample independent t-test did not indicate different
means between the groups (t = 0.7, p = .49). Correlations with personality traits were de-
termined via the BFI-10 scale (Rammstedt et al. 2013). It is plausible that agreeableness is
significantly positively correlated (r = 0.33, p = .02) with a high desire to interact with sales-

persons.

3.4.4 Purchase Duration

The mean purchase duration (from pressing the start button to confirming the purchase)
was 247.2 (SD = 117.1) seconds in total, and a normal distribution could not be assumed (W
= 0.94, p = .02). The mean purchase time categorized by groups was 191.3 seconds (SD =
85.1) in Group A (3D printer) and 298.7 seconds (SD = 120.2) in Group B (washing powder). A
Mann-Whitney U test indicated a significant difference between the groups (U = 142.5, p <
.01). We see a reason for this difference in the fact that many participants interacted directly
with the washing powder packages and regarded the product packages from all sides. For
the printer decision, participants pressed the print button but rarely interacted with printed

objects because they could visually judge the print quality without touching the objects.

3.4.5 RQ1: Desired Help Timing

We asked participants about (i) the desired help timing for an algorithmic UAS and (ii) the
desired help timing for a digital human agent. As shown in Figure 11, an early appearance of
the algorithmic UAS was particularly relevant for the fast-moving consumer good (FMCG).
Reported mean values amounted to 125.5 seconds (SD = 113.2) for both help types (i and ii)
combined, 103.1 seconds (SD = 107.1) for (i), and 148 seconds (SD = 115.8) for (ii). All values

related to the duration after activating the start button which the participants pressed after
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memorizing the decision requirements on the blackboard. The mean difference (i) - (ii) for
desired help timing between the two help providers (desired UAS timing - desired agent tim-
ing), was -44.9 seconds (SD = 123.3) for both groups, -12.3 seconds (SD = 81.4) for Group A
and -75 seconds (SD = 147.4) for Group B. Multiple Wilcoxon signed rank tests (Wilcoxon
1992) for paired samples indicated that the difference (i) - (ii) for both product categories (W
= 245, p = .02) and the difference (i) - (ii) for Group B (W = 39.5, p = .02) were significant,
while the difference (i) - (ii) for Group A was not significant. Participants wanted help from
an algorithmic UAS earlier than from a digital human agent, but this was mainly driven by
the responses in Group B (washing powder). Overall, the differences in desired help timing

showed the importance of investigating different product categories.

3D printer Washing powder
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Figure 11. Desired help timing for algorithmic UAS and digital human consultant stratified

by groups.

Regarding the most popular choices for algorithmic user assistance, 10 participants in
Group A wished for reviews from other consumers and 14 participants in Group B wished for
a product comparison matrix. Hiding irrelevant products and product feature highlighting
were the least appreciated help types in both groups. Supplemental Figure 14 shows the

complete distribution of the desired help types for an algorithmic user assistance.

3.4.6 RQ2: Influence of Knowledge on Help Timing
Internal consistency of the measured product knowledge items amounted to a = .76,
which can be seen as acceptable (Tavakol and Dennick 2011). For the aggregated product

knowledge measure, a normal distribution and homoscedasticity could be assumed. It
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amounted to 2.9 (SD = 1.4) for Group A, 4.2 (SD = 1.1) for Group B, and it significantly dif-
fered between the groups (t =-3.37, p <.01).

As a further control variable, we measured the participants’ product involvement. For the
respective items, a Cronbach’s Alpha of a = .9 indicated a very good consistency. Normal
distribution and homoscedasticity could be assumed. The mean product involvement of 2.9
(SD =1.4) for Group A and 4.2 (SD = 1.1) for Group B was not significantly different between
the product categories (t = 0.25, p = .8). We expected such a similar product involvement for
the different products, due to the equality in monetary incentivization for both groups.

Three linear regression (OLS) analyses provided further insight into whether product
knowledge influenced desired help timings for different help providers. First, we considered
only product knowledge and product category as independent variables and the absolute
desired help timings as dependent variables (two separate OLS models for algorithmic UAS
and digital human agent). For both help types, product knowledge had no significant linear
association with desired help timings. Next, we investigated the same independent variables
but used the difference between the desired help timings as dependent variable (algorithmic
UAS help timing - digital human agent help timing). The respective OLS model showed that
there was also no significant linear association between product knowledge and the differ-
ence in desired help timings. Finally, as a robustness check, we included our control variables
and compared all three OLS models (desired help timing for the algorithmic UAS, digital hu-
man agent, and the timing difference between the two providers, see Table 2).

In all three constellations, there was no significant linear relationship between product
knowledge and desired help timing. However, we did find a significant linear relationship
between participants’ openness and their desired help timing for an algorithmic UAS. More-
over, participants’ age and extraversion showed significant linear associations with the de-
sired help timing for a digital human agent. For the model that accounted for the timing dif-
ference between the help providers, the variables age, extraversion, and product involve-
ment showed a significant linear association with the dependent variable.

Overall, we found no support for an influence of product knowledge on desired help tim-
ing. Instead, the OLS models suggested that age, personality traits, and product involvement

influence desired help timing.
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Table 3. OLS models of association between product knowledge and help timing.

Model 1: Model 2: Model 3:
Algorithmic UAS Digital human
timing agent timing Timing difference
Coef. SE p Coef. SE p Coef. SE p

Knowledge 9.14 11.98 .45 10.79 116  .358 -1.65 13.26 .902
Involvement 5.47 9.61 .573 -16.64 9.32  .082 22.10 10.65 .045%*
Sales Rep. Attitude -6.73 16.72 .689 -7.71 16.2  .637 0.97 18.52 .958
Agreeableness 11.03 7.76 .164 12.65 7.5 .101 -1.63 8.60 .851
Conscientiousness 9.79 8.76 271 -0.41 8.5 .962 10.20 9.71 0.3
Extraversion -5.11 6.41 .43 14.82 6.2 .022* -19.93 7.10 .008**
Openness -22.12 8.78 .016* -3.27 8.5 .703 -18.93 9.73 .059
Neuroticism 8.61 7.74 273 -3.61 7.5 .633 12.23 8.57 .162
Age 3.88 3.34 .252 11.55 3.2 .001** -7.66 3.70 .045%*
Gender (Male) -21.76 37.89 .569 -56.68 36.7 .131 3492  41.97 411
Group (B) -39.00 35.33 277 32.98 343 342 -71.98 39.13 .074
Intercept -13.51 167.85 .936 -199.01 162.7 .229 185.50 185.91 .325
R-squared .30 44 .354

Note. *p < .05, **p < .01

3.4.7 RQ3: Cognitive Load Classification

3.4.7.1 Task Difficulties

We quantified the task difficulty of the generic CL tasks by counting the correct trials for
each difficulty level (easy, medium, and hard). The correct completion rates were 146 out of
150 (97.3%) for the easy task, 131 out of 150 (87.3%) for the medium task, and 45 out of 150
(30%) for the hard task and a Kruskal-Wallis test indicated a significant difference between
the medians (H = 99.03, p < .01). Using the NASA TLX questionnaire (Hart 2006), we meas-
ured how demanding our participants perceived the CL tasks and the purchase decision. Re-
garding the overall task load, a normal distribution could not be assumed for the easy task
and the purchase decision (see supplemental Table 10). Therefore, we conducted a Kruskal-
Wallis test that indicated significant differences between the three multitasking difficulty
medians (H = 65.14, p < .001). Yet, due to the rather low internal consistency of the NASA
TLX items (Cronbach’s a < .7, see supplemental Table 10), we considered only the single item
concerning mental strain for further analyses (see supplemental Table 11). This single item
also differed significantly between the tasks (H = 83.73, p <.001), suggesting that the three
CL tasks evoked the desired low, medium, and high CL levels. Next, we tested which of the
three CL task difficulty levels was most comparable to the purchase decision task. Pairwise

Mann-Whitney U tests indicated significant differences for the tasks with easy and hard diffi-
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culty compared to the purchase decision, but this was not the case for the task with medium
difficulty (see supplemental Table 12). The mean perceived task difficulty of the purchase
decision was only 0.3 standard deviations less than the perceived medium task difficulty.
Looking additionally at the box plots in the supplemental Figure 15, we interpret that,
among the available options, the perceived difficulty of the purchase decision can best be
matched to the perceived difficulty of the medium task. As a robustness check, we investi-
gated the differences in perceived mental difficulty regarding the purchase decision between
the groups. While the perceived mental difficulty in Group B exhibited less variance com-
pared to Group A, we must assume equal mean difficulty between the groups, tested with a

Mann-Whitney U test (U = 368, p = .27).

3.4.7.2 Machine Learning Model

To classify the CL tasks and desired help timings, we chose an 80% training and 20% test-
ing split method. Instead of selecting a dedicated validation set, we applied a four-fold strati-
fied cross-validation on the training set (Browne 2000). The optimization metric for classifi-
cation was accuracy, while (multiclass) negative log-likelihood served as the loss function.
Supplemental Table 6 shows the complete hyper parameter space. We used a randomized
search approach on the hyper parameters to perform a lightweight tuning, limited to a max-
imum of 100 iterations. To interpret the feature importance, we used SHAP values (Lundberg
and Lee 2017).

First, we solely investigated the generic multitasking difficulty levels. All participants per-
formed three easy trials, three medium trials, and three hard trials for a duration of 30 sec-
onds each. The best XGBoost model yielded a classification accuracy of .77 for the test set.
This means that based on the ET and ECG measurements, we were able to predict with 77%
accuracy whether a participant was performing the easy, medium, or hard task. Figure 12

shows the corresponding confusion matrix.
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Easy 0.067

Medium 4

True label

Hard - 0

Medium Hard
Predicted label

Ealsy

Figure 12. Confusion matrix for best multitasking classification model.

The easy task was classified with a high accuracy of .9 while the medium and hard tasks
were not as clearly separable. Despite a correct classification rate of .77 for the medium and
.63 for the hard CL levels, these tasks were frequently mutually misclassified. Nonetheless,
the classification rates for these two classes were still clearly better than random guesses. A
possible explanation for the misclassification between the medium and the hard tasks is the
fact that 70% of the participants were unable to successfully complete the hard tasks. We
observed that some participants only tracked two elements (the moving balls and appearing
numbers) and ignored the additional spinning logo. Even though this strategy almost certain-
ly resulted in an incorrect answer and no performance-based compensation for the respec-
tive round.

The mean absolute SHAP values, as shown in the supplemental Figure 16, represent the
20 most important features regarding the multitasking trials in the test set. Different saccade
duration and angular speed related features were prominent (15 of the 20 most important
features). This means the required time to jump between AOIs was most discriminative for
the CL tasks. Overall, the most important feature was the saccadic mean duration for the
whole 30-second periods. The number of uniquely fixated objects also played a role, as three
features in this regard were among the 20 most important ones. Two blink-related features
and one fixation-related feature were also present among them. Regarding the time window

sizes, five features related to (3, 7, 15) second time spans, three features related to 30-



56

second time spans, and two features related to 5-second time spans. In our case, ECG and
pupillometry features can be considered less important in discriminating between CL difficul-
ty levels as they were not present among the 20 most important features. The best pupil-
lometry feature was variance-related and ranked in 30™ place. For ECG, the best feature was
the HRV correlation dimension (HRV CD) for the whole trial duration (Bolea et al. 2014), a

nonlinear measure for correlations within the signal which ranked in 51t place.

We applied the trained multitasking model to the purchase decisions and considered the
intervals [t-30; t] prior to the indicated help timestamps t. Our intention was to identify the
prevailing CL level shortly before help was requested. Choosing the same interval duration of
30 seconds allowed us to create the features analogously to the generic CL tasks. We classi-
fied each of the time spans as having either a low, medium, or high CL level. To compare one
help interval with one respective non-help interval, we used the interval [t-60; t-30] as a
non-help benchmark. For example, if a participant desired help two minutes after pressing
the start button, we considered the data for the interval from timestamp 01:00 to 01:30 as
the non-help benchmark and the data for the interval from timestamp 01:30 to 02:00 as the
desired help timing period. For the desired timing periods of the algorithmic UAS, the model

classified high (78%) and medium (12%) CL levels (see Table 4 for absolute counts and

Table 5 for classification probabilities). In comparison, most of the non-help benchmark
intervals (96%) were classified as low CL level, and only 4% were classified as high CL level.
For the desired timing of the digital human agent, the model classified 88% of the observa-
tions as high and 12% as medium. However, the benchmarks for these observations were
also mostly classified as high (76%) and medium (18%) while only one observation (2%) was
classified as low CL. This implies a difference in CL (an increase from low to high) during the
60 seconds before the algorithmic UAS was desired but no change in CL during the 60 sec-

onds before a digital human agent should appear.
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Table 4. Classification results (match help timespans to CL levels).

Help type Low Medium High
Algorithmic UAS 0 11 39
Algorithmic UAS benchmark 48 0 2
Digital human agent 0 6 44
Digital human agent benchmark 1 11 38

Table 5. Average classification probabilities (match help timespans to CL levels).

Help type Low Medium High

P (SD) P (SD) P (SD)
Algorithmic UAS .05 (.08) 31(.17) .65 (.2)
Algorithmic UAS benchmark .94 (.17) .01 (.02) .05 (.15)
Digital human agent .03 (.04) .28 (.16) 0.69 (.18)
Digital human agent benchmark .05 (.1) .31(.18) 0.64 (.2)

3.5 Discussion

For our first research question, relevant insights emerged from the statistical analysis. We
found that participants want help earlier from an algorithmic UAS than from a digital human
agent. An early appearance of the algorithmic UAS was particularly relevant for the FMCG
presented to Group B. The fact that a comparison matrix was the most desired algorithmic
help type for the washing powders (see supplemental Figure 14) suggests that participants
were primarily looking for ways to compare the product attributes efficiently. It is likely that
they wanted to reduce extraneous CL induced by the rather unfamiliar VR environment. In
contrast, when considering the 3D printer decisions, reviews from other consumers were the
most desired algorithmic help type. Combined with the insignificant difference in desired
help timing between the algorithmic UAS and the digital human agent when stratifying for
Group A, it suggests that these participants were likely seeking help to cope with intrinsic CL.

Reviews were the second most desired help type. As a review by another consumer and
an expressed opinion by a digital human agent are comparable, we claim that offering a digi-

tal human agent as help provider is more important for the technology product compared to
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the FMCG. This is further supported by the fact that 3D printers were the product for which
our participants reported the least amount of product knowledge. For both groups, partici-
pants exhibited a certain reluctance to call for the digital human agent early in the process. A
good idea could be to provide a digital human agent as optional help, in addition to algo-
rithmic help types which are offered in the first place. Also, when considering non-binary
choices for a certain help offering, our findings clearly highlight the need to customize timing
and type of assistance offerings contingent on different scenarios and product categories.
Regarding the second research question, the experiment confirms significant differences
in average product knowledge between the technical product and the FMCG. However, we
did not find significant linear relationships between product knowledge and desired help
timing for either of the two help providers (and not for the difference in desired help tim-
ing). When controlling for demographics, personality traits and product involvement, the
respective OLS models indicate that participants’ age, extraversion, openness, and product
involvement have significant linear associations with desired help timings. The participants’
age shows a strong positive linear association with the desired help timing for a digital hu-
man agent (p =.001, as shown in Table 3). The positive coefficient indicates that older partic-
ipants wish to receive help from a digital human agent comparatively late (11.6 seconds per
year). With increasing age, the difference (desired algorithmic UAS timing - desired digital
human agent timing) between the desired help timing also decreases, but this effect is not
as strong. Note that the product involvement is not significantly different between the prod-
uct categories (likely due to the equal monetary incentivization) but displays a positive linear
association with the difference between desired timings for the two help providers. More
specifically, a one-unit increase on the 7-point Likert scale for product involvement corre-
sponds to a 22.1-second increase in difference. Considering the product involvement coeffi-
cient for the timing of the digital human agent (B = -16.64, p = .08), we speculate that as
product involvement increases, a digital human agent should appear earlier. To summarize,
our OLS models suggest that product knowledge has a subordinate role with respect to de-
sired help timings. Instead, demographic aspects and personality traits are likely to be more
relevant. Product involvement could also play an important role, particularly in scenarios
where the variance of product involvement is larger than in ours. In our experiment, we kept
the variance in product involvement low by offering the same type of monetary incentive to

solve both the 3D printer and the washing powder task.
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The analysis of the ML classifications allows us to answer the third research question. Our
results suggest that the 30-second periods before the desired help timings can be mapped
with good accuracy to previously determined CL levels, even though the generic tasks were
quite different compared to the purchase decisions. This is a promising result, as it suggests
that further ML paradigms can potentially be trained with generic CL tasks that are quite
different from the actual product decision. Regarding the input-features for the XGBoost
model, saccade-based metrics were most relevant. Both saccadic angular velocity and sac-
cade duration were highly discriminative. ECG measures were not among the 20 most im-
portant features, which suggests the superiority of the ET sensor over ECG for CL measure-
ment, at least in our relatively brief scenario. As a supplemental data source, ECG can be
useful to objectively measure CL, especially over an extended period.

For the 30-second intervals prior to the desired algorithmic UAS help timing, the ML mod-
el predicted medium and high CL levels but none of the observations were classified as low
CL levels. In comparison, the model classified our benchmark interval (60 to 30 seconds prior
to the desired help timing) mostly as low CL level. When considering the average class prob-
abilities and their relatively low variances (see

Table 5), the benchmark and help intervals exhibit good separability. Overall, an adaptive
intervention of an algorithmic UAS, which monitors changes in CL and automatically starts an
interaction, seems possible.

Help timings for a digital human agent were also associated with a medium or high CL lev-
el. However, we did not find a significant change in CL levels compared to the respective
baselines. The CL level is already medium or high during the baseline interval and does not
change when help from a digital human agent is desired. Based on our findings, we argue
that the CL level (at this likely later point in the decision-making process) should not be used

as the sole indicator to inform a digital human agent about good intervention timing.

3.6 Conclusion

This study extends the consumer behavior literature in the emerging subfield of virtual
commerce. Our statistical analysis investigates the desired help timings for two different
product categories in detail and outlines the need for differentiated treatment. It also re-

veals behavioral and demographic factors which are linearly associated with desired help
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timing. Our study also provides information about the most desired algorithmic help types
for different product categories.

Furthermore, we show how ET and ECG data can provide the features for a CL-based ML
model which may benefit the consumer journey. The presented model indicates a good help
timing for an algorithmic UAS while shopping for products or services in a v-commerce con-
text. Even though, the ECG measures proved to be supplemental, our study still applies a
larger number of ET features compared to previous studies. For instance, Peukert et al.
(2020) used only one ET feature to detect decision phases and Pfeiffer et al. (2020) limited
the number of predictors to four variables at a time.

In the v-commerce context, recognizing and reducing CL is applicable in many ways. Visual
and other sensory aids can help to reduce CL and make it easier for consumers to under-
stand information. Moreover, by personalizing a virtual environment, UAS can reduce CL and
make it easier for consumers to perform their decision-making processes. CLT can provides
twelve principles to break down complex information into smaller, more manageable parts
and present it in a clear and concise manner. Our experiment suggests that an ML model can
serve as indicator to invoke an algorithmic UAS which appears just-in-time and selectively
provides the most relevant information to consumers. However, we believe that CL should
not be used as the only criterion which determines the current consumer help seeking sta-
tus. Instead, it should be included in multidimensional models to narrow down individualized

help time spans for specific environments, products, and situations.

3.6.1 Theoretical Implications

With the proliferation of v-commerce, the emphasis in sales shifts towards providing con-
sumers with a dynamic and interactive shopping experience. This increased attention to cus-
tomer experience is driving providers to invest in innovative technology, such as AR and VR
hardware, and the software to support it. The current rise of Al is likely to accelerate this
trend even further, changing the rules for all kinds of retail activities. Our research gives an-
swers to the question by Branca et al. (2023), who ask “What do we know and what do we
not know about consumers’ product evaluations in VR?”. We complement previous research
(i) by showing differences in desired help timings for different product categories, (ii) by
identifying relevant impact factors on help timing, and (iii) by applying an extended set of

sensors and features in an ML approach based on CLT. Our results show the feasibility of



61

inferring CL from ET and ECG data, which then serves as a proxy for algorithmic UAS inter-
vention. However, using CL as single predictor was not sufficient to determine a good point
in time for a digital human agent.

Regarding the help type for an algorithmic UAS, our participants requested reviews and
opinions of other customers most frequently. However, given the fake review problem (He
et al. 2022) that currently prevails on several big e-commerce platforms, and combined with
the rise of LLMs, we doubt that written messages or recorded videos will remain as compel-
ling for consumers as they are today. On the second place were side-by-side product com-
parisons, which outline relevant and detailed information about products in tabular format.
Taking CLT and Cognitive Fit Theory (Vessey 1991) into consideration, such a direct compari-
son might be feasible for a set of up to four products, which we deem a good maximum
comparison capacity. Still, an optimal set size should be the object of further investigations.

The open research questions, such as good intervention timing for digital human
agents, require combined efforts, methods, and theories from fields such as economics, neu-
roscience, and psychology. As sensors like EEG and functional near-infrared spectroscopy
(fNIRS) become more precise while steadily shrinking in size and price, collaborative work
can help to understand behavioral phenomena in the new context of immersive virtual do-
mains. Applying new combinations of input features and incorporating further psychological
effects such as flow (Berger et al. 2023) may also help to explain and model desired help

timing and eventually allow for a better understanding of consumers.

3.6.2 Managerial Implications

We urge practitioners to embrace the challenges and opportunities which new virtual
sales channels offer, sometimes even impose. Tech giants are racing for the next break-
through device after the smartphone and consumers are wearing an increasing number of
sensors that integrate into HMDs and additional wearables, such as wristwatches and ear-
phones. Future shopping assistance will likely involve neurophysiological sensor data, apply
ML, and be intelligent. Still, we believe that the human in the loop remains a crucial factor,
for instance, as a digital human agent. Although delivered through an avatar, a genuine and
actionable recommendation from a real person can still hold more trustworthiness than an
automated suggestion from a recommender system (Castelo et al. 2019), particularly for

contexts where the user wants to that to be seen by others, and to see themselves, as fully



62

human (HeRBler et al. 2022). However, LLMs are improving and a specialized model (in com-
bination with further Al techniques) may soon allow for an intelligent, objective, and thus
trustworthy Al sales agent that is perceived as very human-like (Seeger et al. 2021). Revolu-
tionizing real-world call centers and drop-in stores, v-commerce industry pioneers should
evaluate how a combination of basic UAS, LMM-based Al agents, and digital human agents
may provide most value to the consumer experience.

With respect to ML, our described feature engineering process with different sensors and
window sizes may inform how to create an appropriate inference pipeline for help timing.
Our study provides a guideline on how to design a CL-based model that infers desired help
timing for v-commerce customers. For practitioners with the capability to collect much larg-
er samples than we had, we recommend evaluating time-series-based models. In our ap-
proach, we used a small dataset but with more data available, deep time series classifiers
like InceptionTime (Ismail Fawaz et al. 2020) or TapNet (Zhang et al. 2020) might be suitable
models to determine help-timing for a digital human agent. Providers could further combine
it with an LLM-based Al agent, who has in-depth product knowledge. Overall, such a fine-
tuned ML pipeline is likely to enhance customer experience, increase consumer engage-
ment, and ultimately improve the likelihood of making a sale.

ET has proven to be an accurate sensor that provides both attentional and cognitive met-
rics. In contrast, we note that the ECG features only had a supplemental character for our
study. In a brief period of 30 seconds, the heart rate is not as informative as the change in
pupil dilation or the gaze duration for a certain product. While highlighting the key role of
ET, we speculate about the impact of face tracking (FT) in our help timing prediction en-
deavors. Realistic synchronization of the cheeks, eyelids, and lips may help to improve the
interaction between conversation partners. The next generation of wireless HMDs will inte-
grate ET and FT because good animations and mapping of avatar movements is key in future
virtual interactions, not only sales. Thus, incorporating FT seems like a logical next step.

V-commerce providers should consider ethical and privacy-related aspects, as the use of
neurophysiological sensors raises many questions. To prevent privacy issues, inference could
be done on the edge device itself, but this would be power-consuming and limited by the
embedded processing unit. The European Union enforces special regulatory measures with

the Al Act which could limit online data transfer for inference to a certain degree. However,
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these regulations are not yet established in detail and taking influence by means of close
cooperation with the regulators seems advisable.

Overall, our paper suggests that a virtual showroom is a feasible virtual shopping platform
for both FMCG and technical products. Still, we believe that it is not enough to copy prevail-
ing real-world patterns and paradigms into virtual environments. For instance, as space is no
constraint in VR, we see a classic shelf arrangement with very low and high product positions
as obsolete. Practitioners should put increased effort into identifying and adhering to these
new v-commerce rules, such as the need for adjusted ergonomic considerations (Wilson
1997). Our showroom gives one idea of how a v-commerce sales platform might look, but it
is still very close to what is possible in the real world. Engaging VR room designs could go
beyond physical limitations and incorporate interesting architectural features. These envi-
ronments could further incorporate fun games (Tayal et al. 2022) and social activities (Gal-
lace and Girondini 2022), which might act as ice-breaker between the consumer and the
vendor.

Finally, we advocate for iterative processes when transitioning to virtual sales and help of-
ferings. Our study also describes one part of an iterative research process. Further iterations
will introduce the much-spoken-of avatar, and we also plan to evaluate a product compari-

son matrix UAS for commodity products.

3.6.3 Limitations and Future Research

The limitations of this study can also provide directions and advice for future research. A
first concern is the generalizability of the results as the sample mainly consisted of students.
Future research should involve a broader cross-section of society including different educa-
tion levels, occupations, and age groups.

Second, future studies should increase the sample size because we were rarely able to as-
sume a normal distribution for statistical testing. For future experiments, it would also make
sense to include further product categories (e.g., beverages, food, interior) to obtain a better
understanding of product-specific needs. Our results regarding the desired help type also
suggest taking a closer investigation of comparison matrices as algorithmic user assistance. A
convenient algorithmic UAS for product detail comparison was particularly desired in the

FMCG group.
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Third, immersion, perceived telepresence, and perceived product involvement could have
been increased by adding more sensory channels (particularly audio) to the virtual environ-
ment. Future research could mitigate these aspects, e.g., by adding sound effects to the
products. The room size also had a limiting impact on immersion and telepresence. On sev-
eral occasions the experimenter had to interrupt participants and ask them to remain within
the defined VR space. Subsequently, they were not able to fully immerse themselves in the
virtual space. Future studies with a similar showroom setup should ensure to have at least
25 square meters of dedicated VR space.

Fourth, the quantitative approach with questionnaires leads to methodical issues like cen-
trality tendencies and questionable consistency, especially for the NASA-TLX items (Hart
2006). Future studies could mitigate this issue by applying a mixed methods approach and by
implementing and validating a more consistent mental difficulty scale.

Fifth, our CL-based ML model predicted help timing for an algorithmic UAS well but not
for a digital human agent. However, we believe that it is feasible to create a predictive mod-
el for both help providers. There seem to be other influencing factors for the right interven-
tion timing of digital human agents that our ET and ECG features do not cover. Furthermore,
other model families, such as Hidden Markov Models (Rabiner 1989) or a deep learning time
series classifier might be able to mitigate the issue and predict timings for both help provid-
ers. For a review on different time series classifiers, we refer to Ruiz et al. (2021).

Sixth, future experiments could improve the generic CL tasks or introduce another CL in-
ducing design, such as a n-back task variant (Jaeggi et al. 2010). We performed the single
generic CL task trials sequentially from easy to hard with individually chosen rest periods.
Future research could consider a randomized setup with fixed rest periods (which might re-
sult in better classification results but bears a risk of reporting confounds regarding the task
order). A broader range of CL tasks could also be considered, for instance tasks with auditory
or haptic components or a classic n-back task setup. Furthermore, the period of 30 seconds
for the CL tasks is too short for ECG measurements and should be revised for future re-
search. It is also advisable to consider further sensors for CL, such as measuring galvanic skin
response (GSR) and electroencephalographic (EEG) activity, which might be available for
future VR devices off-the-shelf.

Future studies may provide deeper insights, for the good of both customers and service

providers. New generations of highly immersive VR hardware allow for integrated and ap-
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pealing experiments. We see the use of neurophysiological sensors in VR as a valuable
methodology in experimental consumer behavior research and advocate for further explora-
tion. It remains future work to find indicators for precise help demand prediction regarding a
digital human agent. Different age groups and personality traits (like extraversion) may serve
as further predictors, as our data has indicated. Incorporating additional neurophysiological
aspects, such as emotions (Martinez-Navarro et al. 2019) and stress (Riedl 2012; Ishaque et
al. 2020), is another step to increase the accuracy and generalizability of the ML model. Fu-
ture research should particularly focus on the prediction of the moment when a digital hu-
man (or Al) agent should appear. Most probably, this point in time is more heterogeneously

distributed among participants compared to the algorithmic UAS timing.
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3.7 Supplemental Material

3.7.1 Cover Story 3D printer

You and a team of fellow students develop a board game idea. The team decides to put
the idea into practice and builds a prototype. In a collaborative effort, you design the game
pieces in a 3D software. Now you want to evaluate these models.

For the production, your team decides to purchase a 3D printer. However, an abundance
of different printer variants exists. A company called 3D Print Workshop Inc. offers you the
opportunity to evaluate their 3D printers in a virtual environment. Now, you put on VR
glasses and enter the showroom of 3D Print Workshop Inc. In the virtual environment, you
will see decision criteria which your team considers important. Furthermore, you will see
several 3D printers with their properties.

Your task is to choose the right product.

3.7.2 Cover Story Washing Powder

You share your apartment with several roommates. It is your turn to do the grocery shop-
ping and realize that the washing powder is empty. Therefore, you ask all your roommates
to note down what kind of washing powder they prefer. Of course, you are not going to the
supermarket in real world. Instead, you use your VR headset and order the product in Virtual
Reality. In the virtual environment, you will see decision criteria which your roommates con-
sider important.

Your task is to choose the right product.

3.7.3 Choices for Desired Help Types
Product comparison matrix
Product recommendations
Reviews of other consumers
Product feature highlighting

Hiding irrelevant products
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3.7.4 Help Timing Questions
The experimenter will show you a video of your purchase decision. While watching the
video, please determine when you would have appreciated help during the task ( (X) by a
digital human consultant in the VR environment / (Y) (by an algorithm in the VR environ-
ment) ). After watching the video, please answer the questions below.
(X) What time would be the best moment for an algorithmic decision support to
appear?
(Y) What time would be the best moment for a digital human consultant to ap-

pear?

3.7.5 Product Knowledge Items
1) Compared to others, how familiar do you think you are with the product?
2) Do you know precisely what attributes of the product decide the function of the
product?
3) Do you think you can make a satisfactory purchase of the product based on only
your own knowledge, without another person's help?

7-point Likert Scale: 1 — absolutely not; 7 — absolutely yes
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3.7.6 Supplemental Figures
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Desired algorithmic help type

Perceived mental task difficulty
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Reviews of other customers :
Product recommendations
Product comparison matrix
Hiding irrelevant products
Product feature highlighting
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Figure 14. Desired algorithmic UAS help type stratified by groups.

Easy Medium Hard Decision

Figure 15. Boxplot showing the mental strain among the different tasks.
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Figure 16. Mean absolute SHAP values explaining the multitasking classification model for

the test set.

3.7.7 Supplemental Tables

Table 6. Hyper parameter space for the XGBoost model.

Parameter

Values

colsample_bytree
gamma
learning_rate
max_depth
min_child_weight
n_estimators
reg_alpha

subsample

[0.6,0.7,0.8,0.9]

[0,0.1,0.2,0.3,0.4]

[0.0005, 0.001, 0.005, 0.01, 0.05, .1, 0.5]
[3,5,7,9,11,13,15,17,19]
[1,3,4,7,9]

[25, 50, 75, 100, 125, 150, 175, 200]

[0, 0.001, 0.005, 0.01, 0.05]
[0.6,0.7,0.8,0.9]
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Table 7. Eye tracking feature overview.

Feature* Comment
Blink count
Blink duration Max, Mean, Var

Fixation count
Fixation duration Max, Mean, Var

Saccade count

Saccade duration Max, Mean, Var
Saccadic angular speed Min, Max, Mean, Var
Dominant pupil iris ratio Min, Max, Mean, Var

Unigue object count

* ET features were calculated for the different time windows 3, 5, 7, 10, 15, and 30 sec.

Table 8. ECG feature overview.

Feature* Comment

Time domain

NN Min, Max, Mean, Median, MAD
SDNN, SDSD, RMSSD, Prc20NN, Prc80NN,

pNN20, pNN50, HTI, TTIN

Frequency domain

HF, VHF, LnHF, HFn, LFn

Time-frequency domain

STFT, WT, WVD, SWVD

Nonlinear domain

SD1, SD2, sSD1/sD2, S, C, C1, C2, CSI, Cvi,

CSI_Modified, PIP, CD, HFD, KFD, LZC, CVNN,

CVSD, MCVNN, IQRNN, IALS, PSS, PAS, GlI, SI, Al,

Pl, DFA_alphal, ApEn, ShanEn, FuzzyEn

MFDFA_alphal Width, Peak, Mean, Max, Delta, Asym-

metry, Fluctuation, Increment

* ECG features were only calculated for the full 30 second time windows.
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Table 9. Product criteria classification.

Category (A) 3D printer (B) Washing powder
Rather easy - Easy device setup - Allows for 100 washing cycles
- Large model print size - Conserve colors
- PETG material printable - Efficient dirt removal
Rather hard - Fast print speed - Environmentally friendly
- High print quality - Allow high washing temperature
- The device should not catch - Little powder amount per wash cy-
fire cle

Table 10. Overall task difficulty and test results for normality and for consistency among

NASA TLX items.

Task Mean SD Shapiro-Wilk W Shapiro-Wilk p Cronbach’s a
Easy 289 0.727 .897 <.01** .629
Medium 3.60 0.767 974 .345 574
Hard 457  0.910 .967 .169 .582
Decision 2.98  0.972 .946 .024* .699

Note. *p < .05, **p < .01
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Table 11. Mental task difficulty descriptive analysis and test results for normality.

Task Mean SD Shapiro-Wilk W Shapiro-Wilk p
Easy 2.14 1.385 .740 <.01%**
Medium  3.46 1.343 913 <.01**

Hard 5.74 1.226 .849 <.01**
Decision  3.86 1.539 .939 .012%*

Note. *p < .05, **p < .01

Table 12. Pairwise task comparison for differences in mental difficulty.

Task 1 Task 2 Mann-W.U Mann-Whitney p SD

(Bonf. corrected)

Hard Medium 2201.5 <.01** 1.773
Hard Easy 2364.5 <.01** 2.752
Hard Decision 2073 <.01** 1.351
Medium Easy 1976 <.01** 0.967
Medium Decision 1032.5 .76 -0.277
Easy Decision 483.5 <.01** -1.175

Note. *p < .05, **p <.01
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4 Paper C: Customer Decision-Making Processes Revisited: Insights
from an Eye Tracking and ECG Study using a Hidden Markov
Model

Tobias Weil3, Lukas Merkl, and Jella Pfeiffer

Abstract

Good timing is key for many activities in business and society. In the context of adaptive
user assistance, it can work as door opener to further engage with the user. This paper pre-
sents a virtual commerce study which combines eye tracking, electrocardiography, and vir-
tual reality with the goal to detect decision phases in two different purchase scenarios. We
therefore collect objective sensor data in combination with subjective decision phase anno-
tations. Shifts between decision phases are determined subjectively by the participants via
retrospective video analysis. For decision phase recognition, we demonstrate how to use the
neurophysiological sensor data to train a Hidden Markov Model with multivariate mixed
Gaussian emission distributions and how to use it for inference. A main benefit of our ap-

proach is its lightweight character regarding both training and inference.

Keywords: Customer Behavior, Decision-making, Eye Tracking, Electrocardiography,
Hidden Markov Model, Gaussian Mixture Model, Machine Learning, Virtual Commerce,

Virtual Reality.

4.1 Introduction

Approaching customers at the right time is crucial because it can significantly impact the
interaction success (Sykes 2015). Specifically, good timing can help to maximize engagement,
build trust, and increase conversion rates (Friemel et al. 2018). However, to determine the
right point in time to approach a customer requires profound understanding of the target
audience's behavior and preferences (Horvitz et al. 2013). Advances in conversational agents
and user assistance systems (UAS) often focus on the right information, introduce context-
awareness and improve interactivity (Maedche et al. 2016; Pfeiffer 2011; Sykes 2015). Ra-
ther scarcely, previous research has investigated invocation timing based on neurophysiolog-
ical indicators (Peukert et al. 2020). Within the ongoing transformation of the retail sector

towards virtual commerce (Bourlakis et al. 2009) and the rise of the metaverse idea (Ball
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2022), good invocation timing is one of the key components for a variety of information sys-
tem (IS) artifacts. Decades ago, metaverse and virtual reality (VR) advocates already envi-
sioned that a large fraction of daily life and therewith a large fraction of shopping activities
transfers to virtual spaces (Lanier and Biocca 1992; Stephenson 2003). Today, this process
gains momentum, as big tech companies introduce new hardware and applications with rig-
orous commitment. Latest VR headsets ship with eye and face tracking technology which
fosters the potential and feasibility of neurophysiological IS and therefore turns them into a
game changer. With a VR headset on their head, future customers wear a variety of sensors
in proximity to the most reliable information source about their attitudes and moods. In this
paper, we present our approach to integrate neuroscientific methods into virtual commerce

IS. Our research question states as follows:

RQ: Can we determine a good timing to approach customers in a virtual commerce sce-

nario using eye tracking and electrocardiography?

We report our insights gained from a study in which 50 participants had to make purchase
decisions for either washing powder or 3D printers while wearing a head-mounted VR head-
set. We collected participants’ eye tracking (ET) data, electrocardiography (ECG) data, and
created a prediction model that can distinguish between different decision phases. Our in-
sight can be used to inform a UAS or digital human agent when help is wanted. As model for
decision phase recognition, we chose a combination of multivariate Gaussian Mixed Model
and Hidden Markov Model (GMM-HMM). The benefit of our approach is its lightweight
character in both training and inference. Thus, the presented GMM-HMM approach offers
itself as good candidate to make it into soon-to-be released virtual commerce (and other)
neurophysiological sensor-based IS artifacts (vom Brocke et al. 2013). To the best of our
knowledge, no study exists which applies machine learning approaches to differentiate be-
tween different decision phases using neurophysiological sensor data. Our research builds
up on previous models but tries to apply a more generic inference method not solely de-

pendent on product comparisons and re-dwells.
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4.2 Method

4.2.1 Consumer Decision-Making

Several scholars in consumer behavior research suggested models to subdivide customer
decision-making processes into different phases. Most studies support a phase theory which
consists at least of an orientation and an evaluation phase. One prominent phase model is
the five-stage Engel Kollat Blackwell (EKB) model (Engel et al. 1968), as shown in Figure 17.
The EKB model is still widely accepted (Sihi 2018) and frequently serves as basis for further
adjustment to integrate specific aspects and research field dependent needs, such as modifi-

cations for an eye tracking study in VR.

Motivation and Information Evaluation of

. . Purchase Outcome
recognition of need search alternatives

Figure 17. The EKB model, dividing customer decision processes into five phases (Engel et

al. 1968).

In an eye tracking context, several other decision phase models were developed, e.g., by
Russo and Leclerc (1994), Gidlof et al. (2013), and Peukert et al. (2020). These models subdi-
vide decision processes into three phases — orientation, evaluation, and validation. The tran-
sition between different phases is based on simple rules, like re-fixations on products. The
VR study in Peukert et al. (2020) pursued an on-the-fly attempt to determine the phases. Its
authors used eye tracking data and identified the first comparison between two products as
shift between orientation and evaluation. Furthermore, the shift between evaluation and
verification was considered as the moment when the first product entered the shopping cart
(We believe this is a questionable criterion because putting a product into the shopping cart
signals a certain level of confidence).

For the right timing of user assistance, we consider the shift between orientation and
evaluation as particularly interesting. We conjecture that help is most appreciated by cus-
tomers after being within the evaluation phase for a certain offset duration. To verify this
assumption empirically, self-reported desired help timings can be used. Knowing the phase
of a decision process and the offset duration at least approximately, a UAS or sales repre-

sentative can determine a good starting point to approach the customer.
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4.2.2 Neurophysiological Data Collection in VR

The development of visual VR has a longer history than one might expect. For example, an
early head mounted display (HMD) was already developed by Sutherland (1965). Commer-
cial endeavors of big tech companies still focus on HMD development. For research, the lat-
est HMD generation is particularly interesting because many models ship with integrated
neurophysiological sensors, particularly ET (Pfeiffer et al. 2020). ET is integrated because it
can be used to optimize graphic card utilization via foveated rendering, a method which only
renders the focused area in high detail while neglecting peripheral areas (Patney et al. 2016).
Recent research-grade HMDs include further sensors as ECG and electroencephalography
(EEG). The integration of EEG into consumer-grade hardware seems rather unrealistic in the
near and intermediate-term future as the sensor itself is expensive and the electrodes are
relatively uncomfortable to wear. ECG measures a person’s heart rate and is more likely to
find its way into consumer devices. Another sensor, which is very likely to be included into
future customer-grade HMDs, is photoplethysmography (PPG). PPG is a light-based sensor
which can also be used to measure heart rate and corresponding metrics. Compared to ECG,
PPG is cheaper, easier to attach (e.g., a forehead-sensor integrated in the HMD-cover), but
less accurate. It is also imaginable to couple wearables with an HMD, particularly fitness
watches, which already include ECG or PPG sensors. Overall, ET and ECG/PPG are the most
likely sensors for future off-the-shelf HMDs. Thus, it makes sense to use gaze patterns, pupil-

lometry, and heart rate as data sources for inference.

4.2.3 Hidden Markov Model

An HMM is a statistical model which describes a Markov process with a set of states be-
tween which it can transition (Rabiner and Juang 1986; Eddy 2004). At each state, an HMM
generates an observation or output symbol, which is associated with that state. Such obser-
vations generated by a state of the model are referred to as emissions. HMMs find applica-
tion in a variety of disciplines (Liu et al. 2023; Krogh et al. 1994; Schultz and Waibel 2001). To
match the characteristics of our purchase decision scenario in the experimental VR setup, we
use elements of both the classic EKB phase model (Engel et al. 1968) and the eye tracking
model proposed by Russo and Leclerc (1994). We begin with a memorization phase which
corresponds to the motivation phase of the EKB model. During this phase, participants see

purchase criteria on a blackboard and memorize them. The transition between memoriza-
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tion and the next phase is identified by a button press. For the subsequent phases, we use
the phase labels orientation, evaluation and verification as proposed by Russo and Leclerc
(1994). However, we outline that the state transitions in our model have nothing in common
with the originally proposed transitions which were based on specific gaze patterns. Instead,
shifts to evaluation and verification were determined via self-reported timestamps given by
the participants. Next, we adopt the purchase phase from the EKB model, as participants
remained inside the VR scenario after confirming the purchase. Furthermore, an initial and
terminal state are added as they are needed for computation. The corresponding HMM with
flat prior transition probabilities is shown in Figure 18. GMM-HMM with flat prior transition

probabilities..
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Figure 18. GMM-HMM with flat prior transition probabilities.

When the model transitions from one state to another, it refers to a (hidden) multivariate
probability distribution which corresponds to the current input features. Internally, each
state holds a multivariate Gaussian mixture distribution (what turns the model into a GMM-
HMM), which is trained with ET and ECG features based on consecutive five second time
windows. For each of these windows, our feature engineering pipeline creates 44 features
which comprise 26 ET and 18 ECG features. ET features consist of statistical moments (mean,
min, max, var) for blinks, fixations, fixation duration, pupil size, saccadic duration, and sac-
cadic speed. ECG features are limited to the time domain, particularly the heart rate and its
variability. Frequency domain related and non-linear ECG features are not considered be-
cause they would require longer window durations (Pham et al. 2021). If participants indi-
cate a state transition during such a window, the label for the subsequent and all following
windows changes to the next state.

For real-time inference, the GMM-HMM can even be simplified to a GMM classifier which
decides if the evaluation phase is reached or not. Features of a current observation can be
shown to the model which maps them to the probability distribution and stochastically de-
cides whether the evaluation phase is reached or not. If the evaluation phase is indicated
several times in a row, the offset of approximately fifty seconds could be added and finally

the UAS or digital human agent could approach the customer with a help offering.
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4.3 Experiment

4.3.1 Participants

Our sample was collected from 50 participants (29 female, mostly students) with a mean
age of 24.5 years (SD=4.89). Only individuals with normal or corrected-to-normal vision via
contact lenses were accepted since glasses would not fit into the HMD and not wearing
them might confound the ET data. The participation compensation consisted of a fixed 10
Euro baseline plus a performance-based component. After arrival at the lab, participants
signed a consent form. It ensured the participants' basic knowledge of the experiment pro-
cedure and informed them that the experiment complied with ethical standards. Further, it
required them to grant permission to publish their data in anonymized form. For recruit-
ment, we used the participant pool in our self-hosted online registration platform (Bock et

al. 2014) and actively approached students on campus.

4.3.2 Procedure

We simulated customer purchase decisions in VR, collecting ET and ECG data. All virtual
scenes were created using the Unity 2021.3 game engine. Participants entered our show-
room using a Varjo VR 3 HMD with high-frequency ET capability (sampling rate of up to 200
Hz) and a display resolution of 2880 x 2720 pixels per eye. A bioPLUX device was used for
ECG recording and captured signals with a sampling rate of 1000 Hz. Overall, the experiment
followed a between-subjects design and included two different decision scenarios, one for
3D printers and one for washing powders (see Figure 19). To create realistic shopping sce-
narios, we presented dedicated cover stories to both groups. Participants were then shown a
list of purchase decision criteria they had to memorize. The end of memorization phase was
triggered by the participants using a button press which hid the criteria and spawned the
products. Then, they had the chance to gain one Euro in addition to their participation com-
pensation if they matched a previously determined team decision. This monetary incentive
helped to motivate the participants and increased the external validity of the experiment.
Participants confirmed their purchase decision either by putting the product into a shopping
cart or by clicking a purchase button. After making the purchase, participants left the VR
environment and answered questions about their decision phases by means of a first-person

video. This video showed a gaze dot which indicated their visual attention. Participants de-
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termined the moments when they shifted (1) from orientation to evaluation and (2) from
evaluation to verification. For each of these phase shifts, they entered the timestamp in a
web-based questionnaire form. Furthermore, participants reported their desired help timing

for a digital human agent in the same manner as for the phase shifts.

D WS Explorer”

Figure 19. Experimental VR setup

(3D printer decision top, washing powder decision bottom).

4.4 Results

For our analysis, we used python 3.10 and the neurokit2 0.2.3 (Makowski et al. 2021),
pomegranate 0.4.0 (Schreiber 2017), and scikit-learn 1.0.2 (Pedregosa et al. 2011) packages.

We verified our conjecture regarding the desired help timing. As expected, help was most
frequently desired after the shift from orientation to evaluation but before entering the veri-
fication phase. On average, the phase shift from orientation to evaluation was indicated af-
ter 100.2 seconds (SD=79.8) and the shift from evaluation to verification was after 210 sec-
onds (SD=97.2). Participants reported the average desired help timing for a digital human
agent after 148 seconds (SD=115.8), i.e., with an average offset of 48 seconds after starting

the evaluation phase and 62 seconds before entering the verification phase (see Figure 20).
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Figure 20. Boxplots of the self-reported phase shifts and the desired help timing.

Our trained model with posterior transition probabilities is shown in Figure 21. Each state
is holding a multivariate GMM which consists of multiple Gaussian mixture distributions (see
Figure 22 left for a univariate example). We showcase the inference of one full exemplary
purchase process in Figure 22 right. Such phase predictions can be further refined and lever-
aged by a UAS or sales agent to find the best time to approach customers with an assistance
offering. It is noteworthy that training duration only lasted 3.21 seconds and with very brief
inference times a single observation can be predicted on the fly. The mean difference be-
tween classified and reported shifts from orientation to evaluation is -0.14 (SD=4.49) five

second time windows. Overall, the model fits 84.89% of the five second windows correctly.
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Figure 21. GMM-HMM with posterior transition probabilities.
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Figure 22. Exemplified univariate GMM for a single feature (left), comparison between

reported state transitions and model prediction for one purchase decision (right).

4.5 Discussion

Our results show the feasibility of identifying a good timing to approach customers in a
virtual commerce scenario using GMM-HMMs and thus yield an answer to our research
guestion. The presented approach uses multiple neurophysiological sensors as input and

meets our goal to overcome pure comparison and fixation-based phase determination. The
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presented methodology can be adopted by other researchers and practitioners to build a
maybe soon to be realized overarching virtual platform, offering a multitude of intercon-
nected virtual worlds and services.

This work has limitations which may serve as a guideline for future research. First, our
sample almost exclusively consists of students, which limits generalizability. Future research
should involve a broader cross-section of society. Second, the sample size should be in-
creased. Our 50 observations yield little variety to equip the model with performant predic-
tive power. Third, immersion, perceived telepresence, and perceived product involvement
could have been increased by adding more sensory channels (particularly audio) to the vir-
tual environment. Room size also played a limiting role, as participants had to remain rela-
tively immobile and could not fully immerse themselves in the virtual space. Regarding the
applied machine learning techniques, we plan to rigidly quantify the model performance and
give detailed information about the most relevant features. We also want to consider fur-
ther measurements as features, such as electrodermal activity and electroencephalography,
which eventually might also be integrated into future HMDs off-the-shelf. Finally, we plan to
evaluate the simplified GMM classifier version of the model in an experimental virtual com-
merce shopping scenario in which a digital human agent approaches a customer according

to the timing suggested by the model.
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5 Paper D: Real agents in virtual commerce

Tobais Weils, Asmus Eilks, Felix Putze, Jella Pfeiffer and Tanja Schultz

Abstract

Consumers begin to integrate virtual reality (VR) into their daily lives and naturalistic
shopping interactions without leaving home are one of the promising use cases for this new
technology. However, currently most of the interactions in VR take place in a non-
commercial context. To shed light on this lack of virtual commerce adoption, our study uses
an iterative software development approach. We evaluate a sales scenario with an avatar-
based sales agent that is steered by a human actor. A main feature of our research is the
evaluation of different avatars because they facilitate novel, immersive interactions between
buyer and seller that differ from well-studied desktop-based e-commerce scenarios. Previ-
ous avatar studies have shown that striving for naturalism can lead the avatar to elicit un-
canny feelings in the user. Thus, we investigate the severity of the avatar’s uncanniness qual-
itatively and propose the uncanny valley diagram as evaluation tool. In addition to avoiding
the uncanny valley effect, our focus is on the timing of the sales agent's interference with
the user. We develop a simple rule set that defines when the agent appears, based on gaze
patterns. Seventeen participants enter the showroom, evaluate four different 3D printers,
receive decision support from our human sales agent avatar, and make a purchase decision.
The participants then answer questions about their experience in an interview format. The
answers indicate that young consumers value and trust the help provided by digital human
agents. In terms of the uncanny valley, the study documents occurred technical challenges,
such as motion tracking inaccuracies and face tracking issues, that our participants perceived
as uncanny. Regarding the interference timing, participants wanted the agent to appear af-

ter they had sufficient time to get an overview of the product assortment.

Keywords: Interference timing, Motion Tracking, Uncanny Valley, Sales Agent Avatar, Vir-

tual Commerce
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5.1 Introduction

Avatars are widely understood as digital representations of humans and other entities
[15]. Recently, the immersive features of state-of-the-art virtual reality (VR) headsets have
added a new level of realism to avatar interactions, entailing growing popularity of social VR
applications, such as VRChat [19]. Therefore, the use and impact of avatars is growing, and
they are deemed to play a vital role in the transformation of today's Internet and shopping
culture. The use of avatars has been studied in various forms of computer-mediated com-
munication [8, 32, 38, 40, 54] and digital representations of the user have long been an inte-
gral part of the VR technology [42]. In VR, the communication and interaction between enti-
ties can be more naturalistic compared to representations on a desktop computer [26, 60].
With ongoing technological advancements, there are additional technical opportunities,
such as face- and eye-tracking, which allow for nonverbal interaction and information ex-
change between digital communication partners. Recent authors, such as Hennig-Thurau et
al. [33], have stimulated the scientific discussion about avatar interaction and have shown
that more avatar research is needed to keep pace with technological advancements.

Further recent empirical VR studies that investigated consumer behavior have mainly fo-
cused on fast-moving consumer goods [10, 61, 62]. To answer a research call for more prod-
uct variety in consumer behavior research using VR [80], our shopping scenario frames a
purchase situation for a technology product (3D printers) in a virtual commerce showroom,
as shown in Figure 23. We chose 3D printers as products, because the purchase decision
depends on various criteria and may be rather complex (in comparison to grocery goods).
Thus, it is likely that our participants have questions and require help of a sales representa-
tive.

Building on previous eye tracking research that exploits visual attention mechanisms to
delineate different decision-making subphases and transitions [59, 67], we develop interfer-
ence timing rules for the digital human sales agent. We choose the uncanny valley effect [50]
as one of the main aspects of our qualitative evaluation because results of previous research
report the impact of uncanniness on the likeability of the avatar [17]. By incrementally ad-
justing the technical setup, we aim for achieving a level of avatar fidelity that participants
can appreciate. We refine our understanding of how to avoid the uncanny valley, and how to

apply a good timing rule set for the appearance of a digital human agent.
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The goal of our research is to design, evaluate, and continuously improve a sales interac-
tion between a consumer and a digital human agent. We compare an avatar of a fully mo-
tion-tracked sales agent wearing a VR headset to an animated avatar of a sales agent who
controls the avatar on a desktop computer in third-person view. Moreover, we evaluate dif-
ferent approaches to represent facial expressions and speech. Where applicable, we docu-
ment generalizable barriers and boundary factors that limit the adoption of virtual com-
merce shopping and the use of digital human sales avatars. We iterate through different
hard- and software setups and solicit feedback from our participants. By aggregating and
presenting their sentiments, we seek to refine guidance for practitioners with similar en-
deavors. To summarize, we let us guide by the following research questions:

RQ1: How do participants perceive our sales agent avatar in terms of the uncanny valley effect?

RQ2: What simple rule set lets participants appreciate the interference timing of our agent?

Feel free to ask
questions to our agent!

Figure 23. Virtual commerce showroom for technology products.

5.2 Theoretical Background

5.2.1 Avatars

Avatars represent different entities in digital environments, usually users and bots [48].
Most avatar definitions assume or imply that the primary purpose of an avatar is to facilitate
engagement and interaction of a user with the environment and, more importantly, with
other entities [15]. Avatars play a crucial role in virtual worlds and video games because they
provide the means to identify with something and allow for embodiment in a virtual space
[53]. Depending on the technical effort, avatars can facilitate complex actions, such as non-
verbal communication through gestures, posture, proxemics, and even haptic interactions
[66].

For e-commerce, various aspects of sales avatars have been studied, such as credibility,

social presence, and trust [4, 35, 45, 69, 74]. However, only recently have related avatar
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studies been conducted in the context of immersive virtual commerce, such as [82]. Most of
these previous studies in the immersive virtual commerce context focus on avatars for the

consumers themselves [34, 49] or for their peers [36, 75].

5.2.2 The uncanny valley

The concept of the uncanny valley [63], as depicted in Figure 24, refers to a phenomenon
in which human-like avatars or robots elicit negative emotional responses from observers
because they are not convincingly realistic. The phenomenon was first described and coined
by Mori in 1970 [50]. Mori used so-called Bunraku puppets that are a part of a traditional
Japanese puppetry show. These puppets are human-like but can have imperfections that

might lead a viewer to perceive the puppet as uncanny, eerie, or ghostly.
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Figure 24. The uncanny valley diagram (Mori 1970).

To explain why the uncanny valley manifests, the categorical uncertainty hypothesis pro-
poses that the discomfort or unease people experience when observing certain human-like
entities is due to uncertainty about their categorization [63]. Accordingly, a cognitive conflict
occurs when humans encounter entities that appear almost human but have slight imperfec-
tions. The categorical uncertainty hypothesis further suggests that the human brain has a
natural tendency to categorize and classify objects and beings based on their resemblance to
familiar prototypes or stereotypes. If avatars approach a high level of realism but may fall
short in some ways, human brains may have difficulties placing them in one category. The
avatars may not fit neatly into the human category, yet they may appear human-like enough
to raise expectations about human-like behavior that are not fulfilled. This ambiguity may

create a cognitive dissonance and trigger a feeling of unease or discomfort.
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The categorical uncertainty hypothesis is just one of several theories proposed to explain
the uncanny valley phenomenon. Other theories emphasize factors like perceptual mis-
match, perceptual familiarity, or violation of human norms [81]. Recent publications argue
for a change in the depicted curve and offer explanations based on evolutionary psychology

theory and cognitive conflicts [24, 46].

5.3 Method

The iterative design of this qualitative study adopts ideas from agile software develop-
ment [2] and design science research [56, 57]. As Figure 25 shows, we implement a feedback
loop and incrementally refine our virtual environment to gain an understanding of consumer
perception of the avatar’s uncanniness, interference timing, and other explorative factors.

We collect the data in a multi-location lab-linking setup [71, 73] that closely resembles the
technical hurdles of future virtual commerce interactions. For each design and development
cycle, we modify and optimize the sales agent avatar and extend the question catalogue if
new concepts emerge. In retrospective evaluation meetings after each iteration, we discuss
the results, possible technical improvements, and changes needed for the next iteration.

In the feedback loop, we iterate through five design and development cycles with a total
of 17 participants, with previous interviews informing the next iteration. To collect partici-
pant feedback, we choose an interview format because previous qualitative research in vir-
tual commerce context exists, such as [23, 79], but is underrepresented [78]. To create the
guestion catalogue, we follow the guideline by Kallio et al. [39] for a semi-structured inter-
view. The single steps of the guideline are represented as subprocess of the initial interview

design in Figure 25.

Interview
Refinement
4
Identify Define Initial Interview VR Experiment
Problem & »| Objectives —— . —»{ Showroom > P . » Evaluation »| Communication
Design Iteration
Motivate of a Solution Development
Identify prerequisites to Retrieve and use Formulate preliminary . .
; Pilot testing
use a qualitative format previous knowledge guide

Figure 25. Research design overview (adopted from [57] and [39]).
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Findings, explanations, and opinions about the uncanny valley are diverse [24, 46, 81]. We
refrain from debating its correctness but use its original visual representation to help our
participants during the interview. For a better insight into the participant’s feelings towards
the avatar, we give them a sheet of paper with the uncanny valley diagram (Figure 24). After
making sure that the participants understand the concept, they mark an area on the uncan-
ny valley diagram and describe their perception of the digital human sales agent during their
conversation. We then ask our participants to verbalize how they think and feel about the
avatar in the experienced scenario. With their answer, we let the participants indicate their
attitude towards the avatar and reflect on their reasoning during the decision-making pro-
cess.

After completing the interviews, we transcribe the audio recordings in automated man-
ner, check for wrong or missing content, and annotate the texts with speaker labels. If words
are missing or sentences are obviously wrong, we correct them manually using the audio
file. In the next step, we import the corrected and formatted interview texts into the label-
ling tool Taguette [64] and label them. With the extracted statements grouped into catego-

ries, we inform the subsequent research iteration, and finally report our findings.

5.3.1 Showroom environment

For the spatial layout of the environment, we chose two circular rooms connected by a
door (see Figure 26). One room represents the showroom where customers enter and eval-
uate the products; the other room is a waiting room for the agent. Participants can print
example 3D objects with timelapse speed to see the visual difference in print quality. This
interactive demo printing is one of the virtual showroom features that stand out, in compar-
ison to traditional e-commerce websites.

Initially, the connecting door between the two rooms is closed, so that the consumer and
the agent are separated. After one of the appearance criteria is met, the agent opens the
door, greets the consumer, and offers help with the purchase decision. The consumer can
ask questions, further evaluate the options, and finally choose one of the products. After the
sales conversation, the agent guides the consumer to the checkout and helps to complete

the purchase.
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Figure 26. Showroom and agent waiting room layout.

5.3.2 Sales avatars

The sales avatar consists of several components, such as a skeleton, animations, and
blend shapes (which we use to animate facial expressions). However, the visually most
prominent feature of the avatar is the 3D mesh and its texture. In this study, we evaluate
and compare two of the most widely used avatar frameworks currently available, Rocketbox
[30] and Readyplayerme [3]. Both avatar types are humanoid and allow for facial expres-
sions. A key difference between the two avatar providers is the customizability. The Rocket-
box library only offers a pre-made set of models while Readyplayerme, on the other hand,
provides a web interface that allows users to generate an avatar based on a webcam photo

and customize it further according to their wishes.

5.3.3 Interference timing via eye tracking

To realize the gaze-informed agent interference timing, we introduce a gaze dashboard
for the agent in the waiting room. This gaze dashboard shows the visual attention of partici-
pant and tracks the time spent looking at each of the four individual products (see Figure 27
bottom left). The Varjo VR-3 headset has eye tracking sensors that allow to identify the visu-
al attention on the different products via ray casting [1]. We display the aggregated gaze
durations on the products in real-time. Watching the accumulating durations of the different
products allows the agent to identify comparison patterns and the order in which the cus-

tomer evaluates the options.
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Figure 27. Interference timing of the agent based on the gaze dashboard values.

In terms of decision sub-phases (orientation, evaluation, verification, and purchase [67]),
we let the agent start the interaction with the consumer shortly after entering the evalua-
tion phase. We identify the transition from orientation to evaluation by the first pairwise
product comparison [59]. In other words, our strategy lets the participants gain an overview
of the assortment, and the agent interrupts only after they form an own first impression.
This appearance paradigm lets the participants first read product labels and develop ques-

tions before the agent appears and offers help.

5.4 Results

The 17 interview recordings contain a total of 587 conversation sections that are relevant
for the analysis, comprising a total of 22,000 words. Our labels cover 42 different concepts
and the three most frequent ones in descending order are the general conversation topics
"Shopping experience", “Sales agent avatar”, and "VR experience". As shown in Figure 28,

the frequency for conversation parts that cover the “Uncanny valley” ranks fourth.
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In Table 13, we summarize the key features of the interview iterations with the respective

attributes of the environment and number of interviews. The ID consists of following abbre-

viations: Rocketbox (RB), Readyplayerme (RM), Full-body (FB), Third-person (TP), Static-body

(SB), Static-face (SF), and Oculus-Lipsync (OC). Figure 29 depicts the categorizations of the

sales avatar on the uncanny valley diagram grouped by the single iterations, where full-body

motion-tracked iterations are indicated by a circle, third-person steered iterations are indi-

cated by a square, and iteration 5a (RM-SB-OC) is indicated by a triangle.

Table 13. Interview iterations in chronological order.

Order ID Avatar provider Steering mode Facial # Inter-
expressions via views
1 RB-FB-VI Rocketbox Full-body motion tracking VR Vive Facial Cam 2
2 RB-TP-SF Rocketbox Third Person on desktop PC Static face 3
3 RM-FB-SF Rocketbox Full-body motion tracking VR Static face 4
4 RM-TP-OC Readyplayerme Third Person on desktop PC Oculus lip sync 3
5a RM-SB-0OC Readyplayerme  Static body VR Oculus lip sync 3
5b RM-FB-OC Readyplayerme  Full-body motion tracking VR Oculus lip sync 2
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Figure 29. The uncanny valley diagram (Mori 1970) with added participant

opinions about the sales agent for the interview iterations.

Overall, our design and development iterations led to a full-body motion-tracked Ready-
playerme avatar with audio-based facial expressions (lteration 5b, RM-FB-OC). Still, full-body
motion tracking in VR was not satisfactory because abrupt teleportation movements of the
agent drastically reduced the perceived human-likeness of the agent. Particularly at the be-
ginning of the conversation, the agent had to be careful to get the participants’ attention

before coming close to them using several small distance teleports.

5.4.1 Motion-tracked VR agent with Vive Facial Tracker (RB-FB-VI)

As a starting point to represent our digital human sales agent, we used an avatar from the
Rocketbox library that has been applied in previous research setups [20, 24, 45]. The avatar
mimics a traditional businessman wearing a black suit and a white shirt with a tie. Both par-
ticipants perceived the avatar as highly uncanny. One of the participants stated that the ava-
tar was like a zombie, immediately after seeing the uncanny valley depiction (see Figure 29).
They indicated that this feeling was mostly caused by glitches, visual imperfections, and in-
accuracies in the motion capture system (because we experienced moderate fitting issues
with the passive motion tracking markers of the full-body motion tracking suit). The mis-
match of the markers resulted in brief periods in which the motion tracking software was
unable to correctly map the skeleton or parts of it, such as a single leg. This mismatch result-

ed in abnormal positions that most likely contributed to the perceived eeriness. Even though
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both participants experienced further technical issues (wrong floor calibration and issues
grabbing things), they felt present in the scene. One participant criticized the scene lighting
during this iteration. They said that “[...] the shadows of the figure look pretty scary”. How-
ever, both participants perceived the virtual showroom as aesthetically fitting.

For the first participant, the interference timing of the avatar was far from ideal. The sales
agent approached the participant by teleporting (too) close but outside of the participant's
field of view. This led to a negative first impression and a rough start for the conversation.
The participant was startled by the voice that suddenly spoke to them (even if they knew
that the agent would appear at some point in time). They also mentioned that the task was
not fully clear. For the second participant, the first impression was better, and the appear-
ance and welcoming procedure went smoother compared to the first participant. Regarding
the sales agent interference timing, the participant stated: "Maybe for some people, it might
be too early, | think. For instance, if they are reading not that fast and they still did not figure
out all about the description and what the team wants and what the model has". After ex-
plaining our appearance strategy, they added that “it would be more convenient if | have
enough time for thinking and considering”.

When asked if they trusted the avatar's guidance, one of our participants said that they
could imagine such an avatar as a digital shopping companion. In their opinion, it would be
interesting to face a female avatar because women tend to go shopping with their friends.
The other participant in this iteration stated that they preferred to inform themselves

through reviews and videos instead of interacting with a sales agent.

5.4.2 Agent with static face (RB-TP-SF)

Since the uncanny perception of the agent was driven by the marker mismatch, we decid-
ed to modify the motion paradigm. We simplified our setup and animated the avatar instead
of using the full-body motion suit and the facial camera. Moreover, we equipped the Rock-
etbox avatar with simple walking and resting animations. This had the disadvantage that the
avatar could no longer use body language or display facial expressions as in the first itera-
tion. We also changed the appearance criteria to account for the feedback of the previous
session. We introduced fallback options if the gaze pattern rule was not met for too long.
Starting with this iteration, the sales agent joined the consumer after at least one of the fol-

lowing three criteria was met:
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(i) Each product viewed for more than 20 seconds, or
(ii) Total time more than two minutes, or

(iii) The participant called for help or had obvious problems.

The regions on the uncanny valley diagram that the participants of this group indicated
clustered around the medium human likeness and medium affinity regions. The mostly idle
avatar was perceived as quite unrealistic, and participants noted the lack of facial and body
animation as one core issue. However, due to this decidedly artificial appearance, the avatar
was not considered uncanny. Participants clearly stated that they perceived the avatar as
“not in the problematic spectrum” and “definitely not [as] a zombie or corpse” as in the first
iteration.

For two of the participants, the appearance of the sales agent was too early. One of them
made the discrepancy more palpable, adding that they would have liked approximately ten
more seconds on their own.

Participants felt present in the showroom and reported that they were mostly unaware of
the outside world during the experience, aside from minor environmental noise that sporad-
ically distracted them. Overall, they expressed positive general feedback and all comments
about their intentions to use similar virtual commerce environments were positive. Partici-
pants also stated that they trusted the avatar because it embodied a real human agent.
However, they were concerned about a potentially fully digital artificial intelligence (Al)
agent. They argued that such an entity might not be fully adjusted to their personal needs

and instead trained to maximize sales rather than provide ideal consultation.

5.4.3 Motion-tracked VR sales agent with static face (RM-FB-SF)

Following the improvements regarding the perceived uncanniness in the animated itera-
tion, we decided to reintroduce full-body motion tracking, to investigate whether the re-
moval of full-body motion tracking or facial tracking caused the reduced uncanniness. Fur-
thermore, after analyzing the avatar feedback, we substituted the Rocketbox with Ready-
playerme avatars. Apart from more compatible blend shapes, changing the avatar frame-
work provided additional benefits: While we had to choose from a set of predefined avatars

using the Rocketbox library, the Readyplayerme API allowed us to create a personalized ava-
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tar from a webcam photo, and we further customized the avatar appearance from a set of
predefined outfits and accessories.

We slightly adjusted the session protocol and instructed the actor to be more aware
about the startling effect of teleport movements. We advised the actor to clearly teleport
into the consumer's field of view at an appropriate distance (especially not too close) to im-
prove the consumer's first impression. As the topic came up during previous iterations, we
added a question about trust in a hypothetical Al agent to our question catalogue.

Participants stated that they perceived the avatar as static, somewhere between human
and robot, but closer to the human. Compared to the first iteration, participants perceived
this avatar as less uncanny. None of the participants stated that they were scared, though
one participant was startled by the avatar’s appearance, as they did not notice how the
agent entered the room. Most participants stated that they felt present in the virtual envi-
ronment during the experience, although one clearly remarked that they were always fully
aware of being in a real room.

All three answers regarding the sales agent's appearance indicated that the interference
timing rule set worked as intended. In one of the sessions, the actor applied rule (iii) as the
consumer was asking themselves questions. One participant perceived the appearance as
slightly too early and said, “I could have easily just watched by myself for another short mo-
ment.”

In terms of perceived trust, one participant stated that they would trust the avatar less
than a human sales agent in the real world. They argued that they would be concerned that
the person steering the avatar might be hiding their intentions. The third participant stated
that they would trust an Al agent more, mentioning that the Al could eventually have a

broader knowledge base than a human and could therefore be more helpful with facts.

5.4.4 Third-person sales agent with Oculus lip sync (RM-TP-OC)

Since participants criticized the static nature of the avatar's face as major issue during the
previous iteration, we replaced the Vive Facial Cam that we used in the first iteration with
viseme-based facial expressions using the Oculus lip sync framework. Visemes are audio
based and, thus, have the benefit of not needing a facial camera but are less accurate. They
can be thought as different extreme facial expressions and mouth shapes that we blend to

make the avatar look like it is talking.
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We applied the interference timing rule set as in the previous iterations, and again, partic-
ipants perceived the salesperson's appearance as appropriately timed. They consistently
reported that they were not scared or frightened by the avatar but perceived it more as ro-
bot or character in a video game. It therefore appears that while the visemes did not elicit
uncanny feelings, they also did not substantially improve how realistic the avatar appeared.

As in the previous iteration, participants stated that they trusted the guidance of the
agent but indicated that they would do so less in the case of an Al-based agent. One partici-
pant uttered the rationale that they value the subjective experiences a human salesperson
can share compared to an Al agent. For widespread adoption of such a system, one partici-

pant had concerns that it would be easy for sellers to hide product flaws in VR.

5.4.5 Static VR sales agent with Oculus lip sync (RM-SB-0OC)

Following the fourth iteration with successful lip sync for the sales agent controlled in
third-person view, we evaluated the viseme-based approach in combination with full-body
motion tracking. By doing so, we tried to minimize uncanny artifacts that we experienced
with the Vive Facial Cam that we used in the first iteration.

A technical issue caused that the avatar stood statically without any movement despite
the lip sync and teleportation. Since the planned interviews took place sequentially on the
same day, we decided to continue with the sessions and collected the remaining observa-
tions for this day with the static avatar setup.

For this round, our appearance rule set yielded acceptable results because three out of
four participants perceived the agent's interference timing as good. For the remaining partic-
ipant, the interference timing was too early. Upon interference, they even told the sales
agent to wait, and only after more than another minute they started to ask questions. How-
ever, we were not able to derive a meaningful general rule for their case.

Participants did not perceive the avatar as uncanny, stating that the static nature made it
too unrealistic. Two out of three participants experienced minor controller issues but all of
them stated that they felt fully present in the virtual scene and that they were not aware of
the outside world anymore. Moreover, two participants stated that they trusted the agent's
guidance and intentions and that they believed they would do the same if an Al controlled
the agent. Interestingly, the third participant stated that the static avatar seemed too unre-

alistic to be trusted. So, realism and trust in virtual commerce settings may be correlated.
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One participant noted that, while they liked this scenario, they would certainly not enjoy
virtual commerce shopping for every product category. As an example, they stated that they
would not enjoy a virtual environment where they would have to move around to pick up
small products as in a grocery store. Another participant stated that, compared to e-
commerce, they appreciated the ability to look at products from all angles and in the correct

proportions.

5.4.6 Motion-tracked VR sales agent with Oculus lip sync (RM-SB-OC)

For this iteration, we solved the previous tracking issues and evaluated the full-body mo-
tion tracking with the viseme-based Oculus lip sync. One participant perceived the avatar as
human-like and stated that the avatar's use of gestures aided their trust in the agent. The
other participant differed in their opinion, stating that the avatar was not creepy, but more
akin to a robot than a human. The respective mark on the diagram landed slightly closer to
the uncanny region than we intended.

Still, this iteration yielded positive feedback for our appearance rule set and both partici-
pants stated that the avatar came to the showroom to assist them with good timing. The
participants noted that they felt present in the scene, not noticing much of the outside
world. They stated that they had minor issues with the controller handling but were overall
able to navigate and interact.

One participant stated reservations about buying more expensive goods in VR, arguing
that they would not trust a simulation. For higher-priced goods, they would still like to see
and evaluate the devices in real life. Both participants stated that they trusted the agent's
guidance and would trust an Al less than a digital human agent. One participant remarked
that they would not trust the agent in general without own research about the product.
Overall, both participants said that they enjoyed the experience and that they would like to

use similar systems in the future.

5.5 Discussion

5.5.1 Uncanny valley effect
Regarding the uncanny valley effect (RQ1), our interviews reflect a promising improve-

ment across the iterations. In our early attempts, technical issues were clearly a major con-
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tributor to the perceived uncanniness, and in the very first iteration we landed right at the
bottom of the uncanny valley. Our final iteration contrasts this, in which our participants
marked the agent’s appearance in a desirable region of the uncanny valley diagram that is
close to but not within the critical uncanny valley. Participants perceived full-body motion-
tracked avatars steered in VR as superior to the animated avatars. In other words, partici-
pants perceived the animated avatars that were steered in third person view on a desktop
computer as robotic, and facial tracking did not change the robotic emanation. For instance,
one participant said “[...] it's not exactly human [...] it was a bit robotic.” As further im-
provement, we suggest switching to another movement paradigm for the teleport action (as
instant teleportation of the agent confused some of the participants) or using continuous

movements with inverse kinematics [14].

5.5.2 Interference timing

For the sales agent’s interference timing (RQ2), we first started with the simple rule to
wait until the participant inspected all products for at least ten seconds. Already with a lim-
ited number of observations, it became clear that one single threshold value would hardly
be enough to satisfy the preferences of a wide range of consumers. Already in the first itera-
tion, the first participant suggested that this criterion may lead to premature interference of
the sales agent. To incorporate this feedback, we implemented a slightly more advanced
visual representation of the participant’s gaze. We provided a dashboard to the sales agent
that showed the gaze time per product in real time. We also changed the overall timing and
the question catalogue. When the actors applied this slightly more advanced rule set, most
participants perceived the interference timing as good. The gaze time per product may be
reduced from 20 seconds to 10 seconds because two of them indicated that the sales agent
could have appeared a bit earlier ("about 10 seconds earlier", "a bit too long waiting time for

me"). Overall, the interviews suggest that we defined an adequate and still simple rule set,

which may be adapted and further individualized dependent on the context at hand.

5.5.3 Other hindrances and boundary factors
With exceptions, the participants stated that they would trust a human sales agent. When
asked about the importance of motion and face fidelity to foster trust, participants found

body language more important than lip movements. They would further trust a digital hu-
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man sales agent more than an Al, but less than an in-person interaction with a salesperson.
Participants were primarily concerned that a malicious sales agent could mimic persuasive
body language and fake social cues. The prevailing opinion emphasized the importance of
the human element that still elevates trust, both in motion fidelity and decision support. The
actual perceived trust of our participants did not noticeably change between iterations, what
implies that a human sales agent, fully body tracked or not, fosters consumers' trust in our
showroom. It remains an open research question whether a human-like appearance and
movement, that goes beyond the one implemented in this work, can overcome the uncanny
valley completely but for now it remains highly recommendable to aim for its lower end. We
conclude that of whether the sales agent is a real human, or a fully automated Al algorithm
had the greatest impact on our participants’ perceived trust, and that the preference for or
against a human versus Al agent was highly individual.

Privacy awareness was mostly present, but participants had few concerns about ET data.
Twelve out of the seventeen participants indicated that they either did not view ET data as
important or that they did not have strong feelings about their ET data being collected. Par-
ticularly for scholastic purposes, they saw no problem in sharing their ET data and behavioral
data. In the interviews of later iterations, we asked participants how they consider ET data in
comparison to their spatial location. Of the eleven participants to whom we asked this ques-
tion, seven responded that they considered the spatial location more critical than gaze data,
while only one participant considered ET data more critical. Six participants noted that, while
they were comfortable with companies collecting their ET data, it was important to them
that the company stores their data securely. One participant noted that they would like to
have gaze dashboard for themselves, so that they could see the data to reflect their own
attention and factor it into their purchasing decision.

When asked whether participants would have preferred to call the sales representative
manually, we found mixed results. With eight participants, a slight majority of our partici-
pants favored the active agent invocation via button. The preference for or against automat-
ic interference may depend on the general sales attitudes [31] and further impact factors.
We call for future quantitative studies that answer the question of whether consumers pre-

fer active invocation via button/speech recognition or automatic (passive) interference.
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5.6 Conclusion

Our interviews indicate that agents are relevant to virtual commerce, and this paper
shows that we can reduce their uncanniness during five design and development iterations,
without overcoming the issue completely. Our findings serve as a first indicator because they
reflect the opinions of a limited number of people with similar demographic backgrounds.
We outline the role of digital human sales agents as a key aspect of future virtual commerce
and provides guidance for their implementation, for example by documenting the differ-
ences between motion-tracking VR and third-person desktop-controlled avatars. Our inter-
views shed light on consumer perceptions of digital human salespeople, and the iteration
summaries can guide researchers and practitioners in designing similar environments. The
results may also be of interest to other domains. For example, avatars and avoiding the un-
canny valley are also applicable to tutors in educational and instructors in professional in-
dustry training. To substantiate our claims, it would be necessary to confirm the results of
the interviews with a quantitative experiment. Further research opportunities are to extend

the gaze dashboard or to evaluate different interference timing rules quantitatively.
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5.7 Supplementary material

5.7.1 Cover story
Please imagine the following scenario:

You and a team of fellow students develop a board game idea. The team decides to put
the idea into practice and builds a prototype. In a collaborative effort, you design the game

pieces in a 3D software. Now you want to evaluate producing these models.

For the production, your team decides to purchase a 3D printer. However, an abundance
of different printer variants exists. We offer you the opportunity to evaluate different 3D
printers in a virtual environment. Now, you put on VR glasses and enter our showroom. In
the virtual environment, you see decision criteria that your team considers important. Fur-
thermore, you see several 3D printers with their properties. Your task is to choose the right
product. Before the experience, we asked a group of people to agree on which printer is the

right choice for your team. Do you have any questions?

5.7.2 Agent knowledge

During the experience, we ask the consumer to choose one of the products, given the cri-
teria shown in Figure 30. The products look as depicted in Figure 31. The agent approaches
the consumer, welcomes them to the environment, and offers to answer questions if the
consumer has some. Then, the agent moves next to the product table (right, in sight of the
consumer when evaluating the products) and waits for requests. When the participant has
made their decision, the agent accompanies the consumer to the checkout and explains how

to finalize the purchase.

3D Printer Showroom

This is important for your team:
- Easy device setup
- PETG material printable

- High print quality
- Fast print speed
- The device should not catch fire
- Large model print size
- Good value for money

Figure 30. Decision criteria.
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The agent has the following knowledge regarding the product criteria:

Easy device setup: We offer two different types, ready-made and self-assembly
kits. If participants ask, advise them to go for the ready-made variant. Self-
assembly kits are rather for hobbyists and the time it takes is not economical.

PETG material printable: Three types of print material (so called “filament”) are
common: ABS, PLA, and PETG. The full material names are not important. Instead,
it is important that the printed miniatures are durable, i.e., do not break during
fierce gaming sessions. First, ABS requires very high printing and heat-bed temper-
atures. It is also recommended to use an additional cover to prevent the model
from deforming during the print process. Overall, the cost-benefit ratio is not
great. Second, PLA, which is the cheapest and easiest to work with material, is not
an option because it is not durable enough. Figures would tend to break on fre-
quent usage. The third option, PETG, combines the strengths of ABS and PLA.
While it only requires a moderate printing temperature, the resulting objects are
durable and robust.

High print quality: The print quality can be judged by the printed models. A high
quality is represented by a high-poly rabbit and a low quality is represented by a
low-poly rabbit. The two models “Explorer” and “Solid” have low quality. The
agent should encourage the participants to try out the printers themselves by
pressing the print button. The agent can also press the button themselves if re-
quired.

Fast print speed: All models, except the “Explorer” model print in fast mode (ap-

prox. 10 sec.). Again, the agent should encourage participants to try it themselves.
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e The device should not catch fire: Fire protection certification after the DIN norm is
not necessarily required. The certified “Pro” product still can catch fire. Certifica-
tion is no 100\% guarantee. For all products, consumers are strongly advised to
place the printer on a non-flammable underground, i.e., concrete. For the partici-
pants, certification should not be a major decision-making criterion. They should
make sure that the device does not catch fire by the mentioned safety measure.

e Large model print size: The miniatures should be relatively/possibly large, which
speaks for the “Plus” and “Pro” versions. Roughly 30cm vs. 20cm (Explorer and Sol-
id) maximum model size is a noticeable difference. However, the additional 2 cen-
timeters in each dimension of the “Pro” variant in comparison to the “Plus” variant
is not that important.

e Good value for money: Finally, the cost effectiveness is another (striking) argu-
ment to buy the “Plus” variant. The “Plus” model is more than 20% cheaper and if
it is placed on a fire-proof surface (which is suggested for all models), it offers no
relevant disadvantages over the “Pro” variant. Thus, the “correct” choice is the WS
3D Plus model. The agent should try to recommend the features of this model

without revealing that this is the “right/desired” outcome.

5.7.3 Question catalogue

e Can you please introduce yourself and tell us something about your VR experience
so far.

e How often did you have a VR headset on before the experience?

e There is a concept called Uncanny Valley. It says that very humanized representa-
tions seem “uncanny". When you look at the Uncanny Valley scale, where do you
place the avatar of the experience? [Participant is given a sheet with the uncanny
valley, see Figure 29]

e Were there any technical problems with the experience?

e How present did you feel?

e Could you imagine going shopping in such an environment?

e If VR shopping would become really popular, would you trust the avatar and his

advice?
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Now about the avatar of the advisor. How did it feel to face a human in the form of
an avatar?

How did you feel about the timing of the appearance?

Did the agent come at exactly the right time?

If not, when would it have been better for him to appear?

Would you have preferred to actively call the agent yourself?

How real did the avatar feel?

What thoughts come to your mind when you think about your gaze data being
analyzed?

What measures would you like to see in a commercial product to protect your per-
sonal data?

You have now experienced our interpretation of a virtual commerce scenario.

Any final general words about the VR experience?
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6 Paper E: Adaptive product comparison assistance in virtual reality
Tobias WeiR, Jella Pfeiffer and Martin Meiner

Abstract

The exponential growth of online transactions and the proliferation of e-commerce plat-
forms have led to the necessity of effective user assistance mechanisms. As retail evolves
into the digital realm, the role of User Assistance Systems (UAS) is pivotal because useful
adaptations help facing the challenges associated with consumer’s shopping experiences,
ranging from product discovery and selection to payment and post-purchase support. New
interaction paradigms demand for experimental evidence underpinning that the adaption
really helps the consumer with their decision-making process. We investigate if the adaptive
UAS is too smart for its own good and focus on the critical moment of system appearance
and its impact on consumers trust in a virtual reality (VR) retail scenario. In our laboratory
experiment with 120 participants, who all made three different purchase decisions for mues-
li products, a comparison matrix UAS was either present from the beginning or appeared
after the participants began comparing two products. This product comparison was deter-
mined by means of eye tracking. Our data analysis unveils the impact of context-awareness
and explanations about the adaption mechanism on consumer trust. We find a negative rela-
tion between context-awareness and trust with competing mediations via perceived control
over the UAS and intelligence of the UAS. For practitioners, our findings suggest that offering
product comparison UAS in VR retail environments immediately outperforms context-aware

interference timing in terms of building trust.

Keywords: Consumer Behavior, Eye Tracking, User Assistance System, Virtual Commerce,

Virtual Reality
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6.1 Introduction

In retail, gaining and maintaining consumer trust is a clear success factor, and ven-
dors seek to foster trusting beliefs of their clients by paying close attention to their individual
needs (Bauman & Bachmann, 2017; Gomez et al., 2004). With the transformation of retail
from brick-and-mortar stores to e-commerce, decision support for users has become ubiqui-
tous (Maedche et al., 2016). With the recent attempts to shift to virtual commerce (i.e.,
shopping in immersive virtual 3D environments), the importance of User Assistance Systems
(UAS) as an interface between buyer and seller has increased (Acar & Tekinerdogan, 2020).
Although the visual acuity of modern headsets has improved, reading text when interacting
with 3D objects in VR can still be cumbersome. Thus, it makes sense to support consumers
with a comfortable tool that allows for side-by-side comparisons in 2D as on e-commerce
platforms. Following Friemel et al. (2018), we deem adaptivity and interference timing as
elemental for successful customer interactions with such an UAS.

Traditionally, UAS rely on deliberate user input, such as pressing a button, a gesture,
or voice activation. In VR, manual UAS activation can be cumbersome and inefficient be-
cause users cannot see the buttons on the controllers. The limited availability of different
buttons on VR controllers intensifies the issue and, thus, the user experience may improve if
activation happens automatically. In contrast to basic manual system invocation, we propose
to analyze the consumer’s gaze, track product comparison patterns, and use them to deter-
mine the UAS interference timing.

However, it is not clear how an adaptive UAS impacts the consumer’s perceived trust.
A UAS with gaze-based appearance may be more effective than a UAS that is present from
the very beginning because it avoids any negative impact on the overall first impression by
distracting and occluding the products. On the other hand, consumers may lack control over
the system and feel patronized by an automatic appearance paradigm. Furthermore, as ex-
plainability is an important factor for regulators, it is a valuable insight whether an explana-
tion to the consumer (about how and why the UAS appears) influences their perceived trust
in the system (Angerschmid et al., 2022).

We compare two passive interference paradigms: UAS present from the beginning
(NoCtx) and context-aware UAS interference (Ctx). As second dimension of comparison, we
either provide explanations about how and why the UAS interferes (Expl) or we do not pro-

vide any explanation (NoExpl). As Figure 32 shows, the UAS helps to compare multiple prod-
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ucts in a tabular format. In the context-aware condition, the system appears when consum-
ers start to compare two products. We detect this moment by means of eye tracking and use
the first gaze pattern that goes back and forth between two different products. The experi-
ment design aims to identify differences in perceived trust between the basic and the con-
text-aware UAS interference that may be moderated by perceived intelligence of the system

and perceived control over the system.
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Figure 32. The UAS shows a comparison matrix to inform the consumer’s

purchase decision.

This paper contributes to the literature body in following ways: (i) It strengthens the theo-
retical understanding of the relation between context-awareness of a UAS and consumers
intention to trust the system. (ii) It provides guidance if an explanation about the interfer-
ence timing improves the consumer’s trusting intentions, and (iii) it presents a data-driven
comparison of different mediation models and an alternative moderated mediation ap-
proach. Moreover, the presented artifact design informs practitioners who want to imple-

ment similar adaptive UAS.

6.2 Background

6.2.1 User Assistance Systems

At the nexus of consumer behavior and decision support, user assistance is “an intelligent
system’s capability to assist users while performing their task by means of human-, task-,
and/or context-dependent augmentation of [...] human-computer interaction.” (Morana et
al. 2020, p. 189). Examples for common types of UAS in modern computer software are help

systems, tutorials, contextual menus and tooltips. By providing consumers with relevant in-
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formation, UAS can make technology more accessible and user-friendly (Olenberger, 2023).
Among the possible benefits that UAS offer are improved user experience, reduced support

costs, and increased technology adoption (Friemel et al., 2018; Olenberger, 2023).

6.2.2 Context-awareness of the UAS

Context-awareness of computer systems has been subject to investigation for more than
two decades (Abowd et al. 1999; Barkhuus and Dey, 2003, Chittaro and Ration 2000; Capur-
so et al. 2018; Lallemand and Koenig 2020). Schilit et at. (1994) have been first to introduce
the concept of context-aware applications and analyzed it in the domain of mobile distribut-
ed computing. In their categorization, they list proximate selection (the category in which
our UAS fits in) and describe it as “a user-interface technique where the objects located
nearby are emphasized or otherwise made easier to choose” (Chen and Kotz 2000, p. 3).
Since then, further definitions emerged that describe different levels of interactivity and
delineate active and passive context-awareness (Barkhuus and Dey 2003). An active system
adapts to the context independently where a passive system asks to user to do so.

In the domain of human-computer interaction, context-aware interfaces are a frequent
subject of investigation (Stefanidi et al. 2022). Several studies mention the potential of con-
text-awareness to improve the user experience by tracking and adapting to the user’s state
(Carrera-Rivera et al. 2022; van Hove et al. 2017; Zhang and Uruchurtu 2011). However, pre-
vious research has also studied cases in which UAS failed to be beneficial (Dey 2009). The
probably most famous negative example is the Microsoft Office Assistant “Clippy”. Such
failed assistance approaches may have left traces in the minds of future virtual commerce
users, increasing the importance of thoroughly understanding the impact of context-aware
systems on consumer trust.

For smart user assistance, tracking the user’s state and then quickly adapting to it sounds
like a good strategy. The user state refers to the current condition or situation, which can
include their location, other entities they are with, and the interactable objects that are
nearby (Schilit et at. 1994). A related study has investigated interference timing as a form of
context-awareness and concluded “that a small delay in the delivery of information could

result in a large mitigation of disruption” (Bailey and Konstan 2006, p. 705).
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6.2.3 Perceived trust in the UAS

On a basic level, trust can be seen as the willingness to hand over control to another enti-
ty and give up own agency (Berg et al. 1995). The concept of trust plays an important role in
decision-making and has different notions, such as organizational and interpersonal trust
(Rotter 1967). McKnight et al. (2002) emphasize trust-building as essential factor when
adapting to new technology. A user’s trust in an unfamiliar trustee (the assistance system) is
referred to as initial trust (Kim and Prabhakar 2004; McKnight et al. 2011; McKnight et al.
2002). For interpersonal trust, recent research has identified the dimensions competence,
benevolence, and predictability as constituting elements (Deljoo et al. 2018; Afzal et al.
2010). In a business context, the level of trust has implications for consumer satisfaction and
their intention to reuse (Panigrahi et al. 2018; Ginting et al. 2023). The literature suggests
that perceived intelligence of the trustee (Trzebinski and Marciniak 2022) and perceived
control over the trustee (Arcand et al. 2007; Huang et al. 2014) act as potential impact fac-
tors on the relationship between context-awareness and trust.

“[T]rust is a critical factor in stimulating purchases over the Internet” (Quelch and Klein
1996, p. 61) and thus it is of relevance for e- and virtual commerce. In e-commerce, trust
plays a central role because of its high relevance not only for web stores but also for online
platforms and marketplaces with a large number of buyers and sellers (Corbitt et al. 2003;
Jones and Leonard 2008). Empirical evidence from a desktop-based experiment suggests
that consumers with high overall trust in a particular vendor also have a higher intention to
purchase an offered product (Oliveira et al. 2017). Further authors have investigated how VR
may foster trust and the results suggest that offering an immersive virtual commerce outlet

may facilitate a vendor’s overall trustworthiness (Papadopoulou 2007; Gupta et al. 2020).

6.2.4 Explanations of UAS actions

As regulators are currently shaping ethical guidelines and laws for future virtual com-
merce applications, it is a relevant question how an explanation about the adaptive behavior
can alter consumers’ perceived trust in the system (Angerschmid et al. 2022). Explanations
can be categorized in how and why statements (Liao et al. 2020) and specific research
streams may have an own focus. For example, explainable artificial intelligence research
concentrates on why explanations, potentially because of the black-box behavior of deep

learning algorithms that makes it difficult to explain how the system operates (Bauer et al.
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2023). Yet, even in the in the field of explainable artificial intelligence, how explanations
about the system’s overall logic are discussed (Liao et al. 2020). Several studies have shown
that explanations can enhance trust in a system (Rader et al. 2018; Dodge et al. 2019; Yang
et al. 2020). However, other authors provide evidence that users do not follow the algo-
rithm’s advice if it is transparent (Poursabzi-Sangdeh et al. 2021) or that users are even less
willing to trust a system when explanations are provided (Erlei et al. 2020). Overall, there is
controverse empirical evidence about explanations and their impact on the perception of a

context-aware UAS.

6.2.5 Perceived intelligence of the UAS

Johnson et al. (2008) define a user’s perception of overall system intelligence as the sum
of its intelligence, knowledge, and purpose. Likewise, in the context of human-robot interac-
tion, previous studies have shown that perceived intelligence depends on the perceived
competence, knowledge, responsibility as well as sensibleness (Bartneck et al. 2009; Parise
et al. 1999).

Paralleling the research on intelligence perception of technology, the marketing literature
focuses on determining key dimensions of perceived product intelligence. Rijsdijk et al.
(2007) identify six key dimensions for perceived product intelligence: autonomy, ability to
learn, reactivity, ability to cooperate, human-like interaction, and personality. They validate
a now widely adopted scale by comparing non-intelligent with intelligent products, such as
autonomous versus manual lawnmowers, regarding their impact on perceived trust. For
non-human systems, only the dimensions autonomy, ability to learn, and reactivity apply. In
the following, we give a brief overview of these relevant sub-dimensions: Autonomy is the
degree to which the UAS acts independently and goal-directed (Baber 1996). The second
dimension is the ability to learn, and it refers to the degree to which the UAS can use prior
information and adapt to the consumer’s needs (Nicoll 1999). The third relevant intelligence
dimension is reactivity and it refers to the ability of the UAS to react to changes in its envi-
ronment and respond to stimuli (Bradshaw 1997). In line with Moussawi et al. (2021), who
investigated personal intelligent agents, we argue that perceptions of intelligence may play a

role for the trust in a system.
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6.2.6 Perceived control over the UAS

The concept of control describes whether an individual perceives a feedback mechanism
contingent on their own behavior or independent of it. Rotter (1966) builds up on theory
about the human cognitive reward system and describes control as an individual’s percep-
tion of the causal link between their actions and the outcome. Perceived control has many
facets and involves different constructs and theoretical ideas, such as locus of control, causal
attributions, learned helplessness, and self-efficacy (Skinner et al. 1998). The level of per-
ceived control seems to be highly dependent on cultural and individual differences (Hornsey
et al. 2019; Skinner et al. 1998) but there are certain general tendencies. If an outcome is
consistently contingent on the preceding behavior, a notion of perceived control is present
while, on the other hand, if the outcome has a chance component or is independent, the
feeling of control may be weaker or absent.

In the context of adaptive UAS in virtual commerce, perceived control is an integral part of
the consumer experience (Hu 2023). A recent study showed that perceived control and pur-
chase intention go hand in hand (Zhao et al. 2023). However, the used 360° videos do not

allow for movement and interaction. Thus, the results in an immersive VR setup may vary.

6.2.7 Eye trackingin VR

UAS can leverage the capabilities of bio-sensors, such as eye tracking (ET) cameras, to rec-
ord and respond to the state of the consumer (Gellersen et al. 2002). Gaze patterns are suit-
able for tracking visual attention (Duchowski 2017) but ET research heavily relies on the eye-
mind hypothesis (Just and Carpenter 1980). The eye-mind hypothesis only holds if individu-
als do not intentionally direct their attention and visually focus on a certain object while
thinking about something completely different. Even though there are further threads to the
validity of ET research (Orquin and Holmqvist 2018), experimental findings indicate the ro-
bustness and replicability of ET results in numerous scenarios (Holmqvist et al. 2011). Previ-
ous research combined ET and VR and showed that visual attention and pupillometry can
help to learn about the user state (Pfeiffer et al. 2020; MeilRner et al. 2019; Wang et al. 2014;
Novak et al. 2023) and thus may inform gaze-based adaptive features of a UAS. Further pre-
vious ET studies built upon the Engel-Kollat-Blackwell decision phase model that subdivides
decision processes into different phases, such as orientation, evaluation, and validation (En-

gel et al. 1968; Russo and Leclerc 1994). They determined the transition between different
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phases by simple rules based on ET features, like refixations on products. For the right timing
of user assistance, this shift between orientation and evaluation may be of interest. Peukert
et al. (2020) pursued an on-the-fly attempt to determine the phases and used ET to identify
the first pairwise product comparison that indicates a transition from orientation to evalua-
tion phase. That argue that after starting to evaluate two of the buying options in detail,

help may be appreciated by the user.

6.3 Hypotheses

6.3.1 Context-awareness

Barkhuus and Dey (2003) report that context-awareness facilitates a smooth interaction
between humans and information technology. Pointing to the same direction, Richthammer
and Pernul (2020) present results indicating that context-awareness positively influences the
purchasing behavior of consumers when using a recommender system. A further study
shows that context-awareness allows for an increased consumer value for location-based
mobile services (Vos et al. 2009).

Following these positive reports on effects of context-awareness in related domains, we
transfer the idea to a virtual commerce shopping scenario and, compare a context-aware
UAS with one that is immediately present. In our case, context-awareness means that the
consumer’s gaze patterns activate the UAS after the first comparison of two products. The
effect may be negative as an adaptive interference of the UAS can appear intrusive and the
lack of control may diminish the user experience. On the other hand, if a UAS is present from
the very beginning, it could occlude part of the products and negatively impact the user ex-
perience as well. We expect the first effect to be stronger and hypothesize that perceived
trust increases when users are given time to oversee the shelf before displaying the UAS that
helps comparing the products. Thus, we formulate following hypothesis:

H1: A context-aware appearance of the UAS increases perceived trust in the UAS.

6.3.2 Explanation effects
Explanations are revealing the system's internal mechanisms to its users and that plays an
important role in fostering trust (Nunes and Jannach 2017). Related studies indicate that

explanation interfaces can foster trust building (Pu and Chen 2006) and that they impact
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confidence in assisted decision making (Zhang et al. 2020). A further recent study found that
“[e]very explanation improves users’ appropriate trust in [...] the human-machine collabora-
tion” (Yang et al. 2020, p. 197). Even though there is also contrary experimental evidence
that reports negative effects of explanations (Poursabzi-Sangdeh et al. 2021; Erlei et al.
2020), we pose following hypothesis:

H2: The explanations about how and why the UAS appears increase perceived trust in the

UAS.

6.3.3 Mediations

On one hand, trust in the system and control over the system form a tight bond
(Castelfranchi and Falcone 2000; Bijlsma-Frankema and Costa 2005) and Médéllering (2005)
even sees them as duality. Experiments suggest that giving up control leads to a decrease in
trust (Muir and Moray 1996; Lee and Moray 1992). Trust in the system and the intelligence
of this system form an equally tight bond (Haring et al. 2013) and empiric evidence suggests
that perceiving an entity as intelligent leads to an increase in trust (Haring et al. 2013; Mous-
sawi et al. 2021).

We believe in a positive sentiment in favor of the context-aware UAS. When comparing
instant and adaptive UAS interference both the perception about control over the UAS and
intelligence of the UAS may change. The adaptive UAS offers only little control while users
may perceive timely interference as more intelligent in comparison to the instantly available
UAS. We expect to observe a positive effect of the adaptive UAS interference, even though
the indirect effects of perceived control and system intelligence may neutralize each other.
Overall, we conjecture that the effect of context-awareness on trust is mediated by two la-
tent constructs with opposite signs: control over the system and the intelligence of the sys-
tem. In other words, we expect opposed impacts of perceived control over the system and
the perceived intelligence of the system on the perceived trust level of the user. Our hy-
potheses regarding these mediations read as follows:

H3a: Context-awareness effects on perceived trust are mediated by the opposing influ-
ences of perceived control over the UAS and perceived intelligence of the UAS.

H3b: Explanation effects on trust are mediated by the opposing influences of perceived

control over the UAS and perceived intelligence of the UAS.
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6.4 Method

6.4.1 Experimental design

We manipulate the context-awareness of a gaze-based UAS (Ctx) and the explanations
about its behavior (Expl), as shown in Figure 33. The manipulation of context-awareness
consists of two interference paradigms: (a) the UAS is present from the beginning and (b)
context-aware interference of the UAS. We argue that a consumer’s willingness to trust a
UAS depends on the perceived intelligence (Int) of the UAS and the perceived control over
the UAS (Ctrl). Therefore, we see intelligence of the UAS and control over the UAS as latent

constructs that mediate the relationship between context-awareness and trust.
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Figure 33. Base model with two parallel mediations.

The experiment follows a 2x2 between-subjects design; it has an ethics approval, and a
pre-registration (AsPredicted #135337). The manipulation of context-awareness means that
participants either see the UAS from the beginning of a trail or that the UAS interferes right
after the first product comparison. The second treatment dimension is whether the partici-
pant receives an explanation of the UAS behavior before completing the questionnaire (see
the supplementary material for the explanation texts).

We created the VR scenes in Unity; they consist of an onboarding environment and the
showroom in which participants perform three purchasing tasks sequentially. The experi-
ment takes place in a laboratory room with a 3x4m VR area, a VR computer, and a survey

computer (as illustrated in supplemental Figure 37). We use an HTC Vive head mounted dis-
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play (HMD) that has integrated ET cameras with 250Hz. Overall, the experiment is designed

to last approximately one hour.

6.4.2 Manipulation of context-awareness

To detect the moment when the context-aware UAS appears, we use ET and determine
the first X-Y-X product comparison as an indicator (Russo and Leclerc 1994; Peukert et al.
2020). To this end, fixations and saccades are determined in run-time using a saccadic veloci-
ty-based algorithmic approach (I-VT) as described by Salvucci and Goldberg (2000) and the
gaze targets are determined using ray casting (Pietroszek 2019). For saccades, we set
100°/second as the lower angular speed threshold (Holmquvist et al. 2011), and we limit fixa-
tion durations to 0.1 seconds as the lower threshold and 10 seconds as the upper threshold
(Duchowski 2017). If the algorithm detects a fixation, we store the event in a buffer that
keeps the events of the past 10 seconds. With every new fixation, we check if an X-Y-X prod-

uct comparison pattern occurred within this buffer window.

6.4.3 Measurements and constructs

In the survey, which takes place immediately after the VR experience, we ask the partici-
pants questions about their perceived control over the UAS (Kidwell and Jewell, 2003;
Armitage et al., 1999), perceived intelligence of the UAS (Rijsdijk et al. 2007), and their trust
in the UAS (Thatcher et al. 2011; McKnight et al. 2002). We use multiple items for autonomy,
ability to learn, and reactivity to constitute the perceived intelligence construct. We do not
evaluate the human-likeness or personality of the UAS. As a comparison matrix, the UAS
does not have an avatar or other humanoid traits. The construct for perceived control also
consists of multiple items for benevolence, competence, and predictability.

As exploratory control variables, we assess the participants’ affinity for technology using
the ATI-S scale (Wessel et al. 2019) and their disposition to trust technology (Lankton et al.
2015). We measure all constructs on 7-point Likert scales and adapt all questions to fit our
experiment (what includes providing German translations).

A spreadsheet with the exact wording of all items is available in the accompanying online

repository (Weils 2024).
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6.4.4 Procedure

On arrival, we randomly assigned participants to one of the four conditions and started
the corresponding questionnaire. Our consent form informed participants about the ethical
standards and asked them to agree to pseudonymized publication of their data. After the
participants accepted these terms, we determined the participants dominant eye (Miles
1929) and measured their interpupillary distance to adjust the HMD accordingly. Participants
watched a video that explained the upcoming scenario, tasks, controller usage, and how to
interact with the UAS. Then, the experimenter helped them to fit the HMD to their head.
After a 5-point ET calibration and a reading test, participants entered the training scene and
practiced the interactions that they previously saw in the video, guided by the experimenter.

The training environment consisted of the same shelf scene that we used for the subse-
qguent decision task, but the products were baking powder instead of muesli. To familiarize
the participants with the controllers, the experimenter asked them to pick up a product, ac-
tivate the shopping list, use the binocular function to read details on the packaging, activate
the UAS for three products, compare the products, and place one product in a shopping cart
next to the shelf. After viewing and canceling the confirmation dialogue, the participants had
the chance to ask last questions before moving on to the experimental decision tasks.

For each of these decisions, the shopping shelf was filled with 24 different muesli prod-
ucts on randomized shelf positions. We designed the tasks in such a way that only one prod-
uct met the set of criteria specified in the task (see the online supplementary material for
the task texts). For example, participants had to search for a chocolate muesli with a low fat
and sugar content. They also had to consider a nut allergy and, thus, avoid products contain-
ing nuts. Participants were able to check these criteria at any time using the shopping list.
The tasks were incentivized in that participants received a fixed reward of 12 Euro for the
entire experiment and had the opportunity to earn an additional 1 Euro for each product
selected correctly.

After completing all three tasks, half of the participants received an explanation describing
how and why the UAS appeared. We displayed the explanation as text in VR and additionally
provided it on paper after our participants detached the HMD (see supplementary material

for the explanation texts).
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6.4.5 Statistical modelling and sample size

In our Bayesian analysis, we report distributions instead of point estimators(Kruschke
2014; McElreath 2018; van Doorn et al. 2021; Martin 2018). With a small sample and when
assumptions about the population are hard to fulfill, a Bayesian modeling approach offers
advantages over other traditional approaches (van de Schoot et al. 2021). Bayesian sample
size considerations are about achieving desired credibility intervals and posterior accuracy,
and there is no closed formula to calculate the needed number of observations based on
expected effect sizes (van de Schoot et al. 2014; McElreath 2018). Taking the substantial cost
of sequential experimental VR sessions into consideration, we pragmatically aim for the min-
imum number of observations that allows us to assume a normal distribution of the drawn
sample. Overall, we collected 120 clean observations, 30 for each treatment group.

With the small dataset and coarse sample size determination, we deem it advisable to
perform a model comparison that evaluates different prior distributions and model variants.
In our analysis, we relax the assumption for a normal prior distribution by comparing a mod-
el that utilizes normal prior distributions with models that utilize less informative Student-t
prior distributions. The student-t distribution allows to express more uncertainty, as it has
heavier tails compared to the normal distribution and assigns higher probability to more

extreme values.

6.4.6 Participants

The participants (72 females and 48 males, mean age = 26.2, SD = 5.5) were recruited on
our campus and were mostly students. Our questionnaire and procedure were bilingual,
enabling 97 (80.8%) German speakers and 23 (19.2%) English speakers to participate. We
excluded one participant who could not wear the VR headset (due to vision problems) and
two participants who demonstrated insufficient language proficiency in the selected survey

language (German or English).

6.5 Results

We perform the following analysis with JASP (van Doorn et al. 2021), python 3.10 with
additional libraries, especially the package PyMC for the Bayesian models (Patil et al. 2010).
The aggregated data and code are available in the accompanying online repository (Weil

2024). For the sampling mechanism, PyMC relies on a No U-turn sampler (NUTS) implemen-
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tation (Lao and Louf 2020). First, we provide an overview of the main constructs in Figure 34
which shows the responses for the constructs control, intelligence, and trust on a per-group

basis.
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Figure 34. Boxplots per treatment group for control, intelligence, and trust.

6.5.1 Reliability and control variables

Supplementary Table 17 shows the reliability of the constructs. With a Cronbach’s a > 0.8,
most constructs display good reliability (Petter et al. 2007). For the three benevolence items,
the value of @ = 0.791 is slightly below the commonly applied threshold of 0.8, but we still
deem the construct valid. To check whether the questionnaire items map to the theoretical
constructs, we perform a confirmatory factor analysis that is shown in Table 14. The items
for the theoretical sub constructs benevolence, competence, and predictability map correct-
ly and the correlation between the factors is moderate (see supplementary Table 20).

Table 14. Factor loadings for perceived trust with fixed number of three factors.

Factor 1 Factor2 Factor3  Uniqueness
Predictability [TP002] 0.921 0.168
Predictability [TP0O01] 0.853 0.311
Predictability [TP004] 0.809 0.330
Predictability [TP0O03] 0.561 0.621
Competence [TC002] 0.957 0.137
Competence [TC001] 0.804 0.337
Competence [TC003] 0.729 0.312
Benevolence [TB001] 0.944 0.251
Benevolence [TB002] 0.806 0.254
Benevolence [TB003] 0.501 0.667

Note. Applied rotation method was promax.
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To check for confounds in the experimental data, we analyze the control variables. We
conduct Bayesian ANOVAs (van den Bergh et al. 2019) for the participants’ affinity for tech-
nology (measured by the ATI-S scale) and their disposition to trust technology. For both con-
structs the ANOVA indicates no significant differences between the four experimental
groups and favored the respective null model. We omit the tables but provide the JASP file

in the accompanying online repository (Weil® 2024).

6.5.2 Mediations

To address our hypotheses, we use Bayesian mediation models (Hayes 2017; Yuan and
MacKinnon 2009) that utilize different prior distributions and control variables. We compare
these models and select the model with the highest expected log pointwise predictive densi-
ty (ELPD). The ELPD provides a common measure for the generalization capability of the
model at hand (Martin et al. 2021). For the prior distributions, we apply Gaussian distribu-
tions with u = 0, o = 3 and Student-t distributions with u =0, o = 3, and v = 15. For the vari-
ance terms (G¢¢r1, Oine, ANd Opyse ), We Use Half-Cauchy distributions with § = 1 (Polson and
Scott 2012). We fit the models using four Markov chains with 4000 samples each, with an
acceptance rate threshold value of 0.8 (M. J. Betancourt et al. 2015), and monitor the stabil-
ity of the chains (van de Schoot et al. 2014). The base model, as shown in Figure 33, is consti-
tuted of linear functions and can be denoted using following equations, where i represents
the intercept and a and b are the respective coefficients:

Control ~ Prior(io; + ag * Ctx + aq * Expl, 0.441),
Intelligence ~ Prior(i;,; + a, * Ctx + az - Expl, 0it),

Trust ~ Prior(ipyse + Coty * CtX + Coxpr * EXpl+ b+ Control + by - Int, Oppyse)-

We evaluate model variants with Student-t prior distributions that utilize disposition to
trust (Dsp), technology affinity (Ati) or both as control variables, and a variant of the best
model that does not consider explanations. Additionally, we evaluate an alternative moder-
ated mediation approach (Muller, 2005) which models the explanation about the how and
why of the UAS appearance as moderator for the mediation of context-awareness on trust
(see Figure 35). This alternative moderated mediation model can be denoted using following

equations:
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Control ~ Prior(io; + ag * Ctx + a, * Ctx - Expl + a, - Expl, 0.41),
Intelligence ~ Prior(i;,; + a - Int + a3 - Ctx - Expl + as- Expl, oin),

itrust T Cerx * Ctx + Coyp1* Exp + bo - Ctrl + by - Int)

Trust ~ Prior( .
+ag* Dsp + a; - Ati, Oppyst
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Figure 35. Moderated mediation model as alternative approach.

Table 15 shows the comparison results of all evaluated models. The base model with Stu-
dent-t prior distributions has a better ELPD score than the base model with Gaussian priors.
This initial finding motivates the evaluation of further model variants with Student-t prior
distributions. The overall best-performing model with Student-t prior distributions uses dis-
position to trust as single control variable. The runner-up model also uses Student-t prior
distributions but does not take the explanations into account. The difference in ELPD be-
tween these two models is only 0.461 but the difference in standard error (SE) of the model
without explanation path is considerably higher. In our comparison, adding the Ati control
variable decreases model ELPD performance. It is also noteworthy that the moderated me-
diation approach ranks fourth and has a difference in ELPD 1.456 in comparison to the best

model.
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Table 15. Model comparison for combined mediations.

Models Rank ELPD P ELPD SE
LoO LoO Diff
Student-t Dsp 0 -153.426 7.261 0 8.883
Student-t Dsp without explanation path 1 -153.888 6.250 0.461 9.018
Student-t Dsp Ati 2 -154.232 8.234 0.806 8.821
Student-t Dsp moderated mediation 3 -154.883 7.305 1.456 8.959
Student-t 4 -156.908 6.039 3.480 8.684
Gaussian 5 -157.640 7.038 4.214 8.604
Student-t Ati 6 -157.657 6.238 4.231 9.059

We show the best model, Student-t Dsp, in Figure 36 with mean values for the posterior
distributions of all individual parameters and with the corresponding 94% highest density
interval (HDI) threshold values. The 94% HDI is a common choice and the default value set in
the PyMC package, although some authors prefer other values (McElreath 2018). The dotted
arrows in Figure 36 indicate effects that are not significantly different from zero (according
to the chosen 94% HDI threshold). For the parameters a; and c1’, the value zero is only on
the tail of the distribution, and the respective 94% HDI almost does not cover it. Thus, alt-
hough not significant, there is a negative tendency for the explanations regarding their effect

on perceived control over the UAS and the direct effect on trust.
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Figure 36. Diagram of the best combined Bayesian mediation model

with parameter mean values and 94% HDI.
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Table 16, we list the total, direct, and indirect effects for the best combined mediation
model. The 3% and 97% HDI columns represent the lower and upper thresholds for the 94%
HDI that are also shown in Figure 36. Supplementary Figure 39 shows the corresponding
posterior distributions with 94% HDI interval indicators. Regarding the total effects, the pos-
terior distribution for context-awareness (mean = -0.420, SD = 0.185) is significantly different
from zero. This means the context-aware condition had a negative effect on trust, what is
opposed to what we expected. While a total negative effect is present for context-
awareness, the total effect of the explanations is not significant (as it has a negative sign but
is close to zero). Thus, the best model does not provide support for both H1 and H2.

We find that the best model supports both a negative indirect path from context-
awareness via perceived control over the UAS (mean = -0.329, SD = 0.100) and a positive
path from context-awareness (Ctx) via perceived intelligence of the UAS (mean = -0.184, SD
= 0.077), and thus H3a is supported. However, parameters for the explanation effects (Expl)

are not significant and therefore H3b is not supported.

Table 16. Posterior parameter distributions for the Student-t Dsp mediation model.

Effect Mean SD HDI3% HDI97%
Total effect Cxt (ao*bo+ai*bi+co’) -0.420 0.185 -0.764 -0.073
Total effect Expl (a2*bo+az*bi+c1’) -0.037 0.183 -0.373 0.315
Direct effect Ctx = Trust (co’) 0.002 0.172 -0.324 0.328
Direct effect Expl = Trust (c1) -0.260 0.152 -0.548 0.024
Indirect effect Ctx > Control = Trust (ap*bo) -0.329 0.100 -0.519 -0.147
Indirect effect Expl = Control = Trust (a1*bo) -0.093 0.066 -0.222 0.026
Indirect effect Ctx = Intelligence = Trust (a2*b1)  0.184 0.077 0.048 0.333
Indirect effect Expl = Intelligence - Trust (as*b1) 0.039 0.065 -0.083 0.164

6.6 Discussion

The main insight of our study is that participants trusted the context-aware UAS less than
the static variant. The experiment could not confirm findings from other domains that re-
ported more consumer trust for the context-aware system (H1). Instead, the best mediation
model suggests a negative total effect of the context-aware UAS (which consists of gaze-
based interference of the comparison matrix).

The model comparison in Table 15 indicates that disposition to trust is a useful control
variable while using affinity for technology has no positive impact on model performance.

The Student-t model that solely uses affinity for technology as control variable performs
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even worse than the base model with Gaussian priors. Adding the affinity for technology
control variable in combination with disposition to trust also reduces the ELPD score. Like-
wise, the comparison shows that our data-driven approach favors two parallel mediations
over a moderated mediation, even though the difference in model performance according to
the ELPD metric is small.

We acknowledge that different notions of context-awareness are possible, and it is likely
that other context-aware UAS implementations lead to different results. We recall that our
context-aware UAS appeared after the first X-Y-X product comparison pattern. During the
experiments, we observed that invoking the UAS by this single rule was not sufficient for all
participants. We conclude that the simple gaze patterns that we used were not ideal as an
interference criterion. To further generalize, we propose to introduce a band filter to ascer-
tain a time interval with minimum and maximum values for the UAS appearance.

The Student-t Dsp mediation model suggests no significant explanation effect about how
and why the UAS appeared on the participants perceived trust, what is contrary to what we
expected (H2) and what the literature suggests. We conclude that control over the UAS and
intelligence of the UAS are likely not the sole key mediators for the effect of an explanation
on perceived trust. As our results are averse to previous findings, future research may focus
and investigate this dimension separately.

As expected, the indirect mediated explanation effects (via control over the UAS and intel-
ligence of the UAS) have different sign, but they are also not significantly different from zero.
It may make a difference at what point in time the explanation is provided. During the exper-
iment procedure, we showed the explanation after the three purchase decisions were made,
just before answering the questionnaire. The manipulation may be strengthened by provid-
ing the explanation to the participants prior to the decision tasks. We note that giving the
explanation prior to the tasks bears the risk that participants play with the gaze activation
and introduce certain bias. Moreover, participants in the context-aware UAS group received
the information that the UAS activates based on ET data, but they did not specifically know
about the X-Y-X gaze pattern. Providing this explicit information about how to trigger the
UAS may enhance trust in the system and alter the parameters of the presented mediation.
Another viable approach could be to introduce intelligibility as a mediator and let the UAS

introduce its capabilities by itself (Lim 2010).
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While both indirect effects for explanations are not significant, the indirect effects Con-
text-awareness = Control =2 Trust (a0*b0) and Context-awareness = Intelligence = Trust
(a2*b1) are both significantly different from zero and have a different sign. In other words,
we can report competing indirect effects for context-awareness but not for our explanation
manipulation. When additionally considering the distributions for Explanation = Control 2>
Trust (a1*b0) and Explanation = Intelligence =2 Trust (a3*b1) in supplementary Figure 39, it
is easy to verify the relatively small mean effect sizes in the proximity to zero. Thus, we can

further support H3a but not H3b.

6.7 Conclusion

Neither did we expect to find a negative relationship between the context-awareness of
the UAS and participants trust, nor did we expect the explanation to have only a slight direct
negative effect. We must acknowledge that for our scenario, the explanation effect is unlike-
ly mediated by perceived control and intelligence of the UAS. Still, the study confirms that
the effect of context-awareness on perceived trust is mediated by competing paths via per-
ceived control over the UAS and perceived intelligence of the UAS.

For the comparison matrix in our scenario, it seems advisable to refrain from context-
aware interference timing. For muesli products and a relatively small economic incentive in
our experiment, the basic alternative was perceived as more trustworthy, which in turn is
likely leading to a higher intention to reuse and overall satisfaction (Acharya et al. 2022).
However, the product category (especially more valuable goods) and other impact factors
(such as product involvement and saving potential) may alter the situation. For instance, a
comparison matrix for high-end designer furniture may introduce different relationships,
and context-awareness may be appreciated as experience-enhancing feature of the sales
environment for these products. In any case, a button-press to toggle the Ul might also be a
simple but effective means to improve the user experience. Future experiments on virtual
commerce UAS, and particularly comparison matrices, should therefore consider evaluating
manual activation paradigms as additional baseline.

A limitation of our study is our working definition of context-awareness and the question
if we really manipulated it. We argue that interference timing may work different than other
adaptations. This issue points to a future research avenue which could continue investigating

different notions of context-awareness. To provide another kind of context-aware UAS, re-
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searchers could leverage latest artificial intelligence developments, use prompt engineering,
and fine-tune large language models to provide more salient manipulations. Applied to the
virtual commerce scenario at hand, future research may introduce a human-like agent that
users can ask about the best muesli, given a set of criteria, instead of solving the search task
on their own. As agents and avatars come into play, the intelligence sub-dimension which
we did not consider in this work (ability to cooperate, human-like interaction, and personali-
ty) seem to be relevant mediators and should be incorporated into respective models. Even-
tually, virtual agents may be able to provide individualized support which is far superior to
what consumers are currently used to in terms of advertisements, decision support, and

recommendations.
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6.8 Supplemental material

6.8.1 Supplemental figures
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Figure 37. The room layout. A 3x4m laboratory environment with a dedicated VR comput-

er and a survey computer.

4 - 7 -
2 6-
b=
> _ c
g3 S5 ——
2 34
= il
52- L 2
E g 3
] &
21- £ 27
g
0 - 0 -
I | I |
False True False True
Ctx Expl

Figure 38. Left: Mean perceived autonomy conditioned on the UAS type (context-aware
versus basic) visually interesting. Right: Mean perceived control conditioned on the Explana-

tion visually less strong, but still interesting.
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Figure 39. Posterior distributions for the Student-t Dsp mediation model.
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6.8.2 Supplemental tables

Table 17. Reliability of the latent constructs.

Construct Cronbachs a 95% CI
Intelligence 0.927745 [0.907 0.945]
Reactivity 0.867878 [0.825 0.903]
Ability to learn 0.958906 [0.946 0.969]
Autonomy 0.835089 [0.776 0.88 ]
Perceived control 0.851598 [0.799 0.892]
Intrusiveness 0.832579 [0.778 0.877]
Trusting Beliefs 0.814369 [0.761 0.86 ]
Predictability 0.864595 [0.820.9]
Benevolence 0.79075 [0.716 0.848]
Competence 0.879306 [0.836 0.912]
Disposition to trust 0.864862 [0.806 0.906]
User Experience 0.829567 [0.779 0.872]

Table 18. Factor loadings for perceived intelligence items.

Factor 1 Factor 2 Factor 3 Uniqueness

Abilitytolearn[ILO03] 1.046 0.077
Abilitytolearn[IL002] 0.930 0.169
Abilitytolearn[ILO04] 0.889 0.251
Abilitytolearn[IL0O01] 0.816 0.213
Autonomy[lA002] 0.899 0.375
Autonomy[lA003] 0.837 0.316
Autonomy[IA001] 0.742 0.372
Reactivity[IR0O04] 0.947 0.219
Reactivity[IR003] 0.844 0.439
Reactivity[IR002] 0.530 0.266
Reactivity[IR0O01] 0.440 0.337

Note. Applied rotation method is promax.



181

Table 19. Factor loadings for perceived trust.

Factor 1 Factor 2 Uniqueness
Benevolence[TB002] 0.815 0.371
Competence[TC003] 0.793 0.342
Competence[TC001] 0.722 0.430
Competence[TC002] 0.713 0.340
Benevolence[TB001] 0.691 0.533
Benevolence[TB003] 0.576 0.686
Predictability[TP002] 0.933 0.168
Predictability[TP0OO1] 0.833 0.332
Predictability[TP004] 0.803 0.340
Predictability[TPOO3] 0.588 0.618

Note. Applied rotation method is promax.

Table 20. Factor correlation with manually adjusted number of three factors.

Factor 1 Factor 2 Factor 3
Factor 1 1.000 0.306 0.050
Factor 2 0.306 1.000 0.637
Factor 3 0.050 0.637 1.000
Table 21. Analysis of effects on trust.
Effects P(incl) P(excl) P(incl|data) P(excl|data) BFincl
Ctx 0.600 0.400 0.216 0.784 0.184
Expl 0.600 0.400 0.589 0.411 0.954
Ctx =& Expl 0.200 0.800 0.029 0.971 0.120
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6.8.3 Explanations

6.8.3.1 Basic UAS
How: The UAS has been available at all times, so that the help could be used immediately

from the beginning. It has not adapted to your behavior.

Why: The UAS was primarily intended to help you compare products (product comparison

matrix). Once you started comparing, you could directly use the UAS to support you.

6.8.3.2 Context-aware UAS

How: The UAS decided when to offer you help based on real-time analysis of eye tracking
data. It did this by analyzing your eye movements. Once you made a pairwise comparison
between two products, the UAS was provided to you. The system has therefore behaved

adaptively.

Why: The UAS was primarily intended to help you compare products (product comparison
matrix), which is why the help was only offered to you when you made the first comparison
between two products. Only from this point on was the UAS helpful for you. Before, the
comparison matrix could have hindered you from gaining the overview by blocking your field

of view.
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6.8.4 Tasks

6.8.4.1 Task1

A good friend is coming to visit you over the weekend, which is why you would like to
get some muesli for breakfast. You know that your guest prefers muesli with chocolate. Your
guest also likes muesli from the Koelln brand. Specifically, your guest prefers a pure choco-
late muesli without any other flavors like cookies or crunch. Additionally, you are aware that

your guest has a peanut allergy, so the product must not contain it.

Finally, the muesli should be as cheap as possible.

Schoko

mit Hafer-Voilkernflocken und
20 % feiner Schokolade

Figure 40. Solution for Task 1.

6.8.4.2 Task2

A good friend is coming to visit you over the weekend, so you would like to get some
muesli for breakfast. You know that your guest prefers muesli with fruits. Therefore, the
muesli should not only contain one fruit but should include several different fruits (at least
two different ones). The muesli should also be low in sugar or have no added sugar. Lastly,

the muesli should contain as little fat as possible (per 100g).
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Figure 41. Solution for Task 2.

6.8.4.3 Task3

A good friend is coming to visit you over the weekend, so you would like to get some
muesli for breakfast. You know that your guest prefers crunchy muesli. Additionally, since
your guest enjoys eating chocolate, the muesli should be a crunchy muesli with chocolate (at
least partially chocolate as an ingredient). You also want to buy a muesli with as much con-
tent in the packaging as possible. Lastly, the muesli should have as few calories (kl/kcal per

100g) as possible.

Figure 42. Solution for Task 3.
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