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1 General Introduction 

I invite the reader to take a moment to think about what is possible and what determines 

it. As key concept in various disciplines, the possible describes the area of human experience 

that lies beyond the here and now. “The possible is not opposed either to the ‘actual’ or the 

‘real’ and, in fact, our capacity to engage with what is possible grows out of concrete experi­

ences and ends up transforming them” (Glăveanu, 2023, p. vii). 

With the advent of Virtual Reality (VR), researchers have yet another tool at their disposal 

to push the boundaries of possibilities and make recently unimaginable experiences happen. 

Early VR pioneers, like Sutherland (1968) and Lanier (1989), were quick to embrace the tech­

nological opportunities, creating virtual environments already decades ago, with  incredibly 

minimal hardware resources by today's standards. The miniaturization of transistors (Wu et 

al. 2007) and breakthroughs in organic light­emitting diodes (Kang et al. 2022) made it possi­

ble to produce today’s state­of­the­art VR devices, especially VR headsets. Soon, the idea of 

an  interconnected world emerged, the Metaverse,  that partially  replaces  the deteriorating 

real word, at least as a part­time habitat (Stevenson 1994). The author depicts a scenario in 

which the whole society adopts a parallel  immersive virtual world  into their everyday  lives. 

With the rebranding of a large social media platform company to “Meta”, some enthusiasts 

were already heralding the dawn of this new era. However, current sales figures, customer 

sentiment, and  technical developments point  in a different direction.  Inadequate network 

infrastructure,  interoperability  issues, and blockchain  throughput  limitations are  just  some 

of the major problems that  let the Metaverse remain rather fiction than reality (Ball 2022). 

To  sum  up,  the  current  state  of  VR  technology  is  proving  to  be  less  disruptive  than  the 

smartphone, and barriers such as general technology aversion, discomfort in wearing, and a 

lack of VR applications are resulting in less adoption than some enthusiasts expected. 

Nonetheless,  in certain niche areas the current state of VR technology proves to be suc­

cessful. For example,  the  learning and  teaching domain  shows promising use cases  for VR 

(Renganayagalu et al. 2021). Consumer behavior and human computer interaction research 

also benefits from the  latest VR technology (Stepanova et al. 2023). Eye tracking  in VR and 

the recording of additional  (bio­)sensors allows to adapt  to  the user and offers various re­

search opportunities (Meißner et al. 2019). 
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Previous research has  identified good timing as relevant  factor  for  interactions between 

buyer and seller (Friemel et al. 2018; Lieven 2016). Our basic assumption is that most sellers 

will  eventually  offer  virtual  stores  and  showrooms  that  consumers  can  enter  using  a  VR 

headset.  Thus, we  pose  all  research  question  of  this  dissertation  in  the  realm  of  virtual 

commerce. We cover different aspects of consumer behavior and user  interaction with the 

virtual environment, be  it with a human­like agent or a modest  interface element. A com­

mon denominator and thread that runs through the manuscripts  is the pursuit of questions 

about adaptivity of these help providers, especially the timing of interference with the user. 

Our articles document the boundaries of virtual commerce with the state of VR hardware 

and software limitations in the year 2025. At the same time, our artifacts and results shape 

the  future  virtual  commerce  landscape by providing  guidance and applicable examples  to 

practitioners and future generations of researchers. 

The  first presented paper, Paper A,  is about a machine  learning project that shows how 

InceptionTime, a deep learning time series classifier, can predict healthy product choices in a 

VR shopping environment. Our  investigation  is based on a  large­scale VR data set of more 

than  thousand product choices  that was  collected by Peukert et al.  (2019). The goal  is  to 

predict healthy and unhealthy product choices using eye tracking data. Because the observa­

tions in the sample exhibit high class imbalance (mostly unhealthy product choices), we ap­

ply  an  evaluation metric  that  is  geared  towards  the  correct prediction of healthy  choices 

(what  introduces a  flavor of nudging  towards healthy products). We  find  superior perfor­

mance of the deep time series classifier in comparison to a shallow gradient boosting base­

line model. Overall, the results suggest that the presented method may be useful as feature 

generator for a gaze­based recommender system. 

Paper B focuses on good interference timing of user assistance in VR and combines ideas 

from  the educational and consumer behavior domain. We present an experimental design 

that covers two stages:  in the first stage participants perform mentally demanding tasks;  in 

the second stage they perform a purchase decision. We  train a cognitive  load classifier on 

the mentally demanding  tasks of  the  first  stage.  The  features  consist of  eye  tracking  and 

electrocardiography recordings that we synchronize and aggregate. Subsequently, the cogni­

tive load classifier evaluates the purchase decisions based on the same features. Our results 

suggest that a good timing for algorithmic user assistance may be predicted based on cogni­
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tive load. However, the demand for help by an avatar seems to be affected by further influ­

ence factors, such as age and openness of the participant. 

Paper C is a spin­off from the project presented in Paper B. We present an approach that 

utilizes  a  Hidden Markov Model  with  gaussian mixture  distributions  to  discern  decision­

making sub phases. The Gaussian distributions represent different eye tracking and electro­

cardiography features, like fixations, saccades, and heart rate variability. The results suggest 

that sub phases of the decision­making processes and the transitions between the sub phas­

es are detectable by means of the collected eye tracking and electrocardiography features. 

Paper D  is a  lab  linking project  in  cooperation with Bremen University.  In  a distributed 

setup, we mimic a customer  interaction  in the Metaverse and simulate sales conversations 

in a virtual commerce showroom. A human agent is steering an avatar either in third­person 

or with a full­body motion tracking suit, what entails different levels of fidelity. With a quali­

tative approach, we pursue the question how uncanny the agent is perceived and if we can 

improve  the  impression of  the participants  iteratively. Following  the  research questions of 

our previous study, we collect opinions about the right interference timing of the agent. We 

derive a simple appearance rule set to have actionable advice  for  the agent, based on the 

consumer gaze patterns. 

As the final contribution of this dissertation, Paper E is a project that was also initialized by 

Christian Peukert, who created  the  initial experimental design.  I  took over his  research by 

performing modifications  to  the questionnaire, experiment application, and by conducting 

the lab sessions with the help of my student assistants. The study investigates whether con­

text­aware user assistance fosters trust, and if this relation is mediated by perceived intelli­

gence of the system and perceived control over the system. Moreover, we investigate if ex­

planations about the system’s behavior alter these relations. In our case, context­awareness 

refers to whether the system  is present from the very beginning or  if  it appears adaptively 

using eye  tracking  information. We  report a Bayesian  statistical analysis  that provides evi­

dence for the hypothesized mediation paths. In the analysis, we compare different variants 

of  parallel mediations  and  an  alternative moderated mediation  approach  using  different 

prior distributions and control variables. 
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2 Paper A:  Early Bird  – Predict  healthy product  choices  in  virtual 

commerce 

Tobias Weiß, Jella Pfeiffer, and Thies Pfeiffer 

Abstract 

Due to advances  in extended reality technology, an  increasing number of head­mounted 

displays are equipped with eye trackers. These sensors allow to predict customers’ prefer-

ences on­the­fly. Such information can serve as features for recommender systems. We pro­

pose to treat eye tracking data as time series and utilize a deep time series classifier for in­

ference. Our evaluation  investigates possibly early predictions about customer preferences 

for healthy products  in a  virtual  reality  environment. The  results,  that are based on data 

from  a  large­scale  laboratory  experiment,  demonstrate  superior performance of  the  time 

series classifier, compared to a shallow gradient boosting baseline. They indicate a trade­off 

between prediction quality and how early  this prediction  is made. Overall, our  study  sug­

gests that eye tracking and time series classification are valuable avenues for research and 

practice.  Adaptive  (shopping)  assistants  and  recommendations  based  on  artificial  intelli­

gence and bio sensors seem to be in close vicinity. 

 

Keywords: Extended Reality, Eye Tracking, Healthy Consumption, Time Series Classification, 

Virtual Commerce 
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2.1 Introduction 

Healthy food choices are a highly relevant topic for making predictions and recommenda­

tions  in retail context  (Cho et al. 2014; Naruetharadhol et al. 2023), as food choices are an 

important determinant of physical health and well­being (Wahl et al. 2017; Block et al. 2011; 

Bublitz et al. 2013). After  the disruptive retail  transformation  from physical warehouses to 

e­commerce,  a  slower  but  continuous  development  towards  virtual  commerce  is  taking 

place  (Evans and Wurster 1999; Bourlakis et al. 2009; Gadalla et al. 2013; Kovacova et al. 

2022). Extended Reality (XR), an umbrella term for Augmented Reality (AR) and Virtual Reali­

ty (VR), found  its way  into Western society. Through  interaction and high realism, this new 

technology  offers  unprecedented  opportunities  that may  encourage  consumers  to make 

healthier choices. Research on the topic is needed that investigates new challenges and op­

portunities. Thus, we think that retailers should seize the opportunity and adjust their user 

assistance capabilities  in order to meet the eminent needs of consumers who visit their fu­

ture (at  least partly virtual) commerce environments  (Regt and Barnes 2019). Examples are 

adaptive head­up displays (HUDs that display customized product information and compari­

son options), personalized side­by­side recommendations, contextual advertising, and cross­

platform nudges based on individual characteristics and preferences (Mariotti et al. 2023).  

While acknowledging that research should advocate for rigid privacy measures within any 

XR  environment,  technological  developments will most  likely  lead  consumers  to wear  XR 

headsets,  equipped with  various bio  sensors,  for prolonged periods.  Today,  the  first  con­

sumer­grade XR devices offer bio sensor based features, such as foveated rendering (Patney 

et  al.  2016)  and  gaze­based  interactions  (Piumsomboon  et  al., 2017). One  reason  for our 

anticipated  proliferation  of  biosensors  is  the  privacy­personalization  paradox,  which  de­

scribes  the  fact  that  people  readily  give  personal  information  away  if  they  expect  utility 

while misjudging the real value of their personal information (Hoang et al. 2023). 

Especially eye tracking (ET) based applications are a unique selling point in the current XR 

adoption phase. Eventually, ET could become a quality­of­life feature which consumers take 

for granted, like the camera in smartphones. ET can help to achieve a high degree of person­

alization  and  serve  as  an  additional  source  of  information  for  recommender  systems 

(Meißner  et  al.  2019).  In  XR  recommendation  scenarios,  ET may  eventually  replace  click 

streams and historical data to a large extent. This is because ET allows close investigation of 
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the user’s decision process and at the same time is available in the early phase of a purchase 

situation (Pfeiffer et al. 2020; Meißner et al. 2019). 

Regarding  the consumer preference  (the dependent variable), we  focus on healthy con­

sumption  because  in  different  societies  around  the  world,  an  increased  attention  on  a 

healthy  lifestyle  is noticeable  (Parashar et al. 2023). Policy makers are  introducing healthi­

ness  indicators  like  the Nutri­score  label and are actively  fostering a healthy  consumption 

(Hercberg et al. 2021), which  is even  included  in  the United Nations Sustainable Develop­

ment Goals (Fernandez 2019). Therefore, a valuable customer insight is whether a person is 

open  to suggestions  that support healthy product choices or not  (Tran et al. 2018).  In  the 

light of these developments, we pose following research question: 

Can we identify customers who buy healthy products possibly early during their decision 

process in a virtual commerce scenario? 

Shallow machine  learning approaches have already been successfully applied  in previous 

studies that predicted other aspects of the customer journey, for example the customers’ 

search motives (Pfeiffer et al. 2020) or the duration of intermediate decision stages (Weiß et 

al. 2023). A  logic next step  is to  leverage deep  learning to make predictions. An  increasing 

amount of data and architectural improvements are likely to allow training of highly general­

izing (or very precise, specialized) models. We treat the ET data as a discrete time series and, 

as further contrast to previously mentioned works, compare InceptionTime, one of the most 

promising deep learning approaches for time series classification, with the shallow gradient 

boosting method XGBoost which uses cross­sectional features. 

With  this paper, we  contribute  to  the  information  systems  literature  in  theoretical and 

practical manner. (i) As theoretical contribution, we show the superiority of using the com­

plete  time  series of ET data  in contrast  to  treating  the ET data as cross­sectional data  (by 

aggregating the number of fixations and other attributes). (ii) On the practical side, we show 

a promising way to personalize assistance systems in future metaverse applications based on 

the  inobtrusive  collection  of  ET  data.  Our  paper  describes  a machine  learning  approach 

based on ET data which can be used  to personalize XR experiences. The resulting  features 

are of particular  interest  for new products or, more generally,  in cases where user data  is 

absent.  (iii) Moreover, we  investigate  the  trade­off between prediction quality and  timing. 

Overall, our  results  inform  the  reader about  interesting  time windows during  the decision 
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process  in our experimental purchase  situation. From  a broader  research perspective, we 

show a promising way to personalize assistance systems in future metaverse applications. 

2.2 Related Work 

Already several Second Life studies pioneered connected 3D environments in virtual retail 

platforms (Bourlakis et al. 2009; Gadalla et al. 2013; Papagiannidis and Bourlakis 2010). The 

authors have depicted a transformation of traditional retail and outlined evolving marketing 

opportunities in the virtual space. Their conclusions emphasize the need for highly personal­

ized and precisely timed customer service. Today, such connected virtual environments are 

thought of as  the Metaverse, which are accessible via various XR devices. Recent compre­

hensive literature reviews about Metaverse shopping (Kliestik et al. 2022; Alcañiz et al. 2019; 

Shen et al. 2021) and AR shopping (Popescu et al. 2022) show how earlier claims, that were 

made for desktop environments, remain valid in XR. Virtual commerce research has diversi­

fied while  recommendations  and  personalization  remain highly  relevant. A  further  recent 

review  by  Xi  and Hamari  (2021)  categorizes  83  XR  shopping  studies  along  different  axes 

(theories, in­ and output devices, tracking technology, products, cognitive reactions, behav­

ioral outcomes) and suggests a number of avenues for future research. Among these sugges­

tions is an effective and efficient design of XR shopping, which is the area this work contrib­

utes  to.  The Metaverse  is  steadily  taking  shape  (Peukert  et  al. 2022;  Sriram  2022), head­

mounted displays  (HMDs)  technology  is advancing  (Spagnolo et al. 2023), and HMD prices 

are deteriorating (Jensen and Konradsen 2018). 

Various experiments have shown the significant impact of recommendations on the shop­

ping behavior of customers, such as Li et al. (2022). Particularly in advertisement driven envi­

ronments,  recommender  systems  are  very  important  business  components.  For  instance, 

Google1  accounts  40% of  the Play  Store  app  installations  and  60% of  the  YouTube watch 

time  to  recommendations made  by  their  recommender  system.  Collecting  implicit  infor­

mation which reflects user preferences, like ET data, is an unobtrusive approach. This is im­

portant, as finding similarities between individuals should happen without any disruption of 

the consumer. Working with ET data in the context of recommender systems is nothing new 

(Castagnos et al. 2010; Xu et al. 2008; Zhao et al. 2016), but previous  studies  focused on 

 
1 https://developers.google.com/machine­learning/recommendation/overview 
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desktop based e­commerce websites. Moreover, these studies do not aim for an early pre­

diction of user preferences. 

Generally speaking, gaze patterns have potential to improve various aspects of digital and 

virtual commerce. Takahashi et al. (2022) presented a work in which they utilized ET to op­

timize  a  desktop­based 3D store layout. With the goal to support customers’ decision­

making  processes,  the  experiment  software  used  gaze  information  to  rearrange  the  dis­

played  products.  Another  step  towards  gaze­pattern  utilization  in  shopping  context  was 

made by David­John et al. (2021). Their experimental design consisted of selection tasks of 

food items listed on recipes in a VR scene. The authors predicted the participants’ intent to 

interact using  logistic regression on gaze patterns. They treated the data as time series but 

only for a relatively short prediction horizon of 0.17 to 1 second. The results suggest that the 

used model can predict the users’ interaction timing in real­time with above­chance accura­

cy. 

Further ET studies have examined healthy food choices (Fenko et al. 2018; Kim et al. 2018) 

but the prediction horizon of these studies covered the whole decision­making process until 

the very end. Typical research using ET in the field of consumer behavior focuses on under­

standing and modelling the entire decision process up to the final purchase. For example, ET 

research has found the gaze cascade effect which describes a pre­decisional focus of atten­

tion on the chosen product  (Shimojo et al. 2003; Krajbich and Rangel 2011). Regarding our 

research gap, none of these studies predicted customers’ preferences early in the decision 

process. 

In a hybrid field study, Pfeiffer et al. (2020) investigated grocery shopping behavior, espe­

cially  the differences between a  real and virtual  supermarket. The authors did not predict 

consumers’ preferences but two different shopping patterns, namely goal directed and ex-

ploratory search behavior. To predict shopping patterns, they analyzed the collected ET data 

of  29 participants  in VR  (a  room­sized  CAVE  environment)  and  20  in  a  real  supermarket. 

Their  evaluation  covered  increasing  time windows on  a per  second basis.  These windows 

were calculated using the  intervals from the start of each trial to [5; 100] seconds  into the 

decision­making process, increasing by one second. Due to the experimental setup, the clas­

ses were balanced, which  is different compared to data presented  in our study. They used 

shallow machine­learning  approaches  for  point­in­time  related  features  and  not  for  time 

series. We call these features cross­sectional, as they are single values which are aggregated 
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over the whole predefined period. This work identified the total number of fixated products 

and the variance of the average fixation duration among the most important predictor vari­

ables. 

Millecamp et al. (2021) reported gaze pattern classification results for personality traits in 

the context of a browser­based music recommender system. The authors conducted a study 

with 30 participants in which eye movements were recorded using a desktop­based tracker. 

Their goal was to acquire predictions about the participants’ openness, need for cognition, 

and musical sophistication. The authors considered 30%, 60%, and 90% of the data as time 

windows for their predictions. These time windows were  less than the whole task duration 

but 60% and 90% of the decision­making process cannot be considered as particularly early 

stages. In general, their work showed the potential of using ET for adaptation of recommen­

dations and explanations. However,  in the conclusion they outlined  improvement potential 

for the model’s performance and called for further research on different tasks and interfac-

es. 

Our search for related work indicates a research gap that previous authors did not particu­

larly  focus on early prediction of consumer preferences based on gaze patterns. So  far, no 

proposal has been made to leverage ET data to generate features for recommender systems 

in VR which are generated possibly  early  in  customer decision­making processes. Further­

more, to the best of our knowledge, no previous study used ET data with a state­of­the­art 

time series classification model to predict customer choices for healthy products. Using time 

series can improve performance because of leveraging information retrieved from behavior 

over time. 

2.3 Method 

2.3.1 Experimental Design 

As dependent variable, we are  interested  in  the healthiness of different muesli  (cereal) 

purchase decisions.  To  categorize  all products as healthy or unhealthy,  the package  label 

serves as a discriminative criterion. Representatives of the healthy and unhealthy classes are 

illustrated in Figure 1, where the left package is the healthy and the right package is the un­

healthy alternative. The highlighted healthy label reads “without added sugar, wholegrain”. 

We categorized a product as healthy if the packaging indicated at least reduced (or no) sugar 
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or fat. According to this definition, seven out of the total 40 available products in the exper­

iment were marked as healthy products. In total, out of 1040 product choices, 158 (15.2%) 

were  for healthy products. The  imbalanced class  ratio  leads  to methodological challenges, 

which we discuss in the section on the treatment of class imbalances. 

                              

Figure 1. Criterion for healthy (left) and unhealthy (right) is the packaging label. 

Our observations of  retail purchase decisions  in VR were  collected  in a controlled envi­

ronment in a European University laboratory. The experimental design allowed our research 

group to answer several questions. Thus, the data is used in further studies which investigate 

the  impact of  low versus high  immersion on system adoption  (Peukert et al. 2019) and the 

impact of  virtual  reality  in a  conjoint­based  choice analysis  (Meißner et al. 2020). The VR 

scene was created using Unity 5.5.3f1 game engine. Participants were situated in a plain vir­

tual room with a shelf of product packages and a shopping cart, as shown in Figure 2 (slightly 

distorted due  to  copyright  reasons). We used  an HTC Vive HMD with  a dual display with 

2160×1200 pixels resolution, an integrated SMI eye tracker, and HTC hand­held controllers.  

 

Figure 2. Virtual environment with a muesli package shelf and a shopping cart. 
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After signing an informed consent form, all participants made multiple product choices in 

front of a product shelf. Participation compensation amounted to 14 Euro  in total. To pro­

vide an economic incentive, participants received one of their product choices at random as 

part of their compensation. We instructed the participants to choose according to their nat­

ural preference and subtracted the cost of the chosen product from the monetary payout. 

Each experimental session was preceded by a training phase to familiarize the participants 

with the virtual environment. For this training, the shelf was filled with baking mixtures.  In 

the subsequent experimental  trials,  the virtual shelf contained muesli products.  In  total,  it 

held 24 different options which were selected from a product pool of 40 mueslis. Their ar­

rangement followed a design which was suited for a conjoint­based choice analysis (Chrzan 

and Orme 2000). At any time, the product positioning ruled out centrality effects  (Atalay et 

al. 2012). Furthermore, we positioned mueslis of  the same brand close  to each other. For 

each  trial, one out of 171 product arrangements were displayed on the shelf. On average, 

the shelf contained 4.27 (SD 1.09) healthy products.  

Figure 3. The experimental setup. We exclude the training task and real­world decisions. 

Our sample consists of 132 student recordings, of which 45 were  females and 87 males, 

with an average age of 22.13 (SD 1.98). The experiment followed a between­subjects design 

in which one treatment group was asked to make their last two purchase decisions in front 

of a real shelf (with real products). We had to exclude these real­world tasks because the ET 

equipment differed substantially between  the VR and  real­world setup. Thus, each partici­

pant made a total of either eight or ten product choices in VR, depending on the treatment 

group (see Figure 3). In other words, for the present study, we only used purchase decisions 

that were made  in VR. After excluding  the  training  task and erroneous  recordings,  the VR 

trials  yield 1040 product  choices, with an average decision duration of 54.91  seconds  (SD 
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33.49). However, we  further  reduced  the number of evaluated  trials  in  the preprocessing 

because many of the respective decision­making processes were too short (less than 45 sec­

onds) to separate them meaningfully  into sub­phases  (like orientation and evaluation). We 

chose 45 seconds as cutoff duration because of  logic considerations about a decision pro­

cess: a participant would need approximately 15  seconds  to get an overview over  the as­

sortment and another 30  seconds  to decide between  the  items  in  their  consideration  set 

(Hauser 2014). 

2.3.2 Preprocessing 

First, we determined fixations from the raw ET data and calculated the subject’s gaze tar-

get  for each  fixation, which we  tracked by means of ray casting  (Pietroszek 2019). We did 

not consider blinks, pupil dilation and saccades. However, we emphasize that additional fea­

tures could further  improve predictive performance.  In this paper we deliberately chose to 

focus on visual attention, which is best described by fixations (Holmqvist et al. 2011). In gen­

eral, fixations last between 0.2 and 0.4 seconds. Fixations of less than 0.1 seconds were ex­

cluded, as they are too short  for conscious  information processing  (Duchowski 2017). Fixa­

tions lasting longer than 10 seconds were also excluded, as they most likely indicate unnatu­

ral behavior or  faulty sensor  information. Predefined areas of  interest comprised different 

parts of the individual product packages and their related price tags. This enabled us to dis­

criminate  fixations on different product groups  (healthy and unhealthy products). Further­

more, fixations on each individual product and individual product’s nutrition table were 

treated separately.  

Transforming  the  gaze data  into  a  discrete multivariate  time  series  is  the  next  prepro­

cessing step. To aggregate the fixations into discrete bins, it was necessary to choose differ­

ent step sizes for the cut­off points of the bins. We evaluated the step values (0.5, 0.6, 0.7, 

0.8, 0.9, 1, 2, 3, 4, 5, 6, 9) seconds for the time series generation process. These values are 

based  on  reasoning  about  the  average  and maximum  duration  of  a  single  fixation  as de­

scribed above. Shorter steps would often contain no fixation at all, and longer periods would 

cover too many fixations and be too coarse. We applied a sliding window technique (Hota et 

al. 2017) such that all bins overlapped with the previous one by 50%. The purpose of apply­

ing a sliding window is to capture interesting patterns that might be hidden by disjoint inter­
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vals. For each step size, we calculated the number of  fixations, mean, variance, and skew­

ness of the fixation duration (overall and for each of the areas of interest separately). 

Our goal is to provide recommendations as early as possible during the evaluation phase 

of the respective decision. Therefore, we aimed to partially cut off the orientation and vali­

dation phase of the decision process as described in the on­the­fly­detection decision phase 

model by Peukert et al. (2020). In the orientation phase, consumers scan their environment, 

get an overview of the assortment, and do not compare different product choices in detail. 

For our data, the average transition from orientation to evaluation occurred in second 8 and 

the second transition from evaluation to verification occurred in second 47. Accordingly, we 

considered all  integers  in the  interval [0;15] seconds as start values for our time series and 

all integers in the interval [20; 45] seconds as stop values. Using these intervals logically en­

tailed  to  exclude decisions which  lasted  less  than  45  seconds.  Therefore,  keeping  shorter 

decisions would have confounded the  input time series because trials shorter than 45 sec­

onds would  have  to  be  filled with  default  values.  After  excluding  all  purchase  processes 

shorter  than  45  seconds,  516  relevant  product  choices  remained  for  evaluation, with  78 

(15.1%) healthy choices. To  train and evaluate  the classification models, a  random split of 

training (60%), validation (20%), and test (20%) was used. We also allowed for recurring cus­

tomers, i.e., we did not assign all trials of one participant to a single set. This means we as­

sume that customers can return to the store, which is typical for grocery shopping. 

2.3.3 Time Series Classifier 

The deep learning approach InceptionTime (Ismail Fawaz et al. 2020) is a time series spe­

cific  successor  to  the  image  classification model  Inception, also  referred  to  as GoogLeNet 

(Szegedy et al. 2015). InceptionTime is one of the current state­of­the­art deep learning ap­

proaches for time series classification (Middlehurst et al. 2021). The InceptionTime building 

blocks mainly consist of convolutional  layers and pooling  layers  (Aggarwal 2018). The refer­

ence  implementation proposes  to  stack  six  InceptionTime modules  sequentially. As  shown 

on the left in Figure 4, each module consists of several stages. A bottleneck layer (stage 1a) 

reduces  the  input dimensionality. The main  components are  three  convolutional  layers of 

different kernel sizes  (stage 2a). Additionally, a parallel MaxPooling  layer  (stage 1b) makes 

the model  invariant  to  small  perturbations.  This  is  followed  by  another  bottleneck  layer 

(stage 2b) to reduce dimensionality. At the end of each module (stage 3), the output of the 
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convolutions and the max pooling operation are concatenated and serve as input to the next 

layer. As shown on the right  in Figure 4,  InceptionTime uses shortcut connections between 

every third InceptionTime module. These shortcuts help to overcome the vanishing gradient 

problem (Hochreiter 1998) and overfitting (Goodfellow et al. 2016). Finally, a dense classifi­

cation head  (a  fully  connected  softmax  layer) outputs  the predicted probabilities  for each 

class. 
. 

 

Figure 4. An InceptionTime module on the left and a shortcut connection on the right.  

Adapted from Ismail Fawaz et al. (2020). 

The Inception architecture is based on two main ideas: First, reducing the dimensionality 

(via bottleneck layers) keeps the computational complexity low and mitigates overfitting for 

small  datasets.  Second,  convolutional  components with  different  receptive  fields  capture 

different aspects of the time series  (Luo et al. 2016). For temporal data, the receptive field 

can be thought of as the maximum field of view of a neuron. The larger the receptive field is, 

the longer the patterns that can be detected by the neuron. The model uses multiple paral­

lel, densely connected convolutional layers with different kernel sizes (see Figure 4, stage 2a) 

that allow to capture different aspects of the time series. During the trials, an asynchronous 

hyperband scheduler (Li et al. 2020) facilitated the exploration of 50 different combinations. 

Table 1 shows the complete hyperparameter space. 
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Table 1. The hyperparameter space which we used in the InceptionTime tuning process. 

Name  Values  Description 

Activation  

function 

ReLU (Agarap 2019); 

eLU (Clevert et al. 2015) 

 

Alpha   [0.1; 0.3] Uniform  Focal loss 

Bottleneck size  (32, 64, 128)  Inception Module 1a, 

2b 

Gamma  [0.1; 0.3] Uniform  Focal loss 

Kernel Multiplier  (4, 6, 8, 18)  Inception Module 2a 

Learning Rate  [1e­1, 1e­6] Log uniform  Optimizer 

Num Filters  (8, 16, 32)  Inception Module 2a 

Num Modules  (3, 6)  InceptionTime 

 

In total, the different start, stop, and step size values resulted  in 4990 possible combina­

tions. A high­performance cluster was used  to compute all  respective  trials. The Ray Tune 

framework (Liaw et al. 2018), combined with the slurm task scheduler  (Yoo et al.), allowed 

us to partially parallelize the optimization of the InceptionTime instances, which all ran for a 

maximum of 100 epochs, using up to 75 compute nodes equipped with 24 CPU cores. 

2.3.4 Class Imbalance Treatment 

In our data, only 15.2% of choices were for healthy products. The applied methods need 

to  take  this class  imbalance  into account. Otherwise, classifiers  tend  to always predict  the 

majority class. Different paradigms to treat  imbalanced data exist, namely data­level, algo­

rithm­level, and hybrid methods (Krawczyk 2016). We used an 𝛼 balanced focal loss function 

(Lin et al. 2017) for the neural network optimizer to discount the majority classes. It is a hy­

brid  approach  that  combines  cost modifying  and  algorithmic  adjustments.  Focal  loss  is  a 

modification of  the widely used  cross­entropy  loss  function  (Goodfellow et al. 2016). The 

main  idea  is to discount correctly classified samples of the majority class,  i.e., the contribu­
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tion to the total loss value is large for wrong predictions of the minority class. Focal loss and 

can be denoted as 

 
𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑝𝑡) = −𝛼𝑡 (1− 𝑝𝑡)

𝛾 log (𝑝𝑡), with 𝑝𝑡 = {
𝑝, if 𝑦 = 1

 1 − 𝑝, otherwise
 . (1) 

Parameter 𝛼𝑡 specifies the minority class proportion in the test data set, 𝑝𝑡 ∈ [0, 1] is the 

predicted  class probability  for  the  sample, and 𝑦 ∈ {0, 1}  is  the  target  label. The  focusing 

intensity 𝛾 ≥ 0 determines the rate  for discounting easy samples. Note that, when   𝛾 = 0, 

focal loss equals cross­entropy. 

A further algorithmic measure is the evaluation with a suited scoring metric. For the pre­

diction of imbalanced data the accuracy metric is unexpressive (Bekkar et al. 2013). Accuracy 

would put  too much  attention on unhealthy product  choices  (precision)  and  too  little on 

healthy ones (recall). The 𝐹𝛽 metric allows to adjust the trade­off between recall and preci­

sion  (Maratea et al. 2014). A value  for parameter 𝛽 greater  than one emphasizes  the  im­

portance of recall while a value  less than one emphasizes the  importance of precision. For 

this  study, 𝛽 = 1.5  is used because we  focus more on  recall  than on precision. Choosing 

𝐹𝛽=1.5 means we deliberately expose some of  the purchasers of unhealthy mueslis  to  rec­

ommendations for healthy products as trade­off for a higher classification rate of  intended 

healthy  product  choices  (which may  be  interpreted  as  a  form  of  nudging).  The  𝐹𝛽  score 

(Maratea et al. 2014) can be denoted as  

  𝐹𝛽 = (1 + 𝛽2) ∙  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+ 𝑅𝑒𝑐𝑎𝑙𝑙
 .  (2) 

2.3.5 Gradient Boosting Trees Baseline 

This gradient boosting baseline considers aggregated, one­dimensional, features, which is 

the  current  standard.  Utilizing multi­dimensional  features  in  form  of  time  series  is more 

promising because  it allows considering the complete decision­making process  in form of a 

vector, from the start of the purchase situation until the point­of­time when a recommenda­

tion should be made. 

Gradient boosting served as a baseline for this study, as it has shown good results in simi­

lar setups (Millecamp et al. 2021; Pfeiffer et al. 2020). We implemented it using the XGBoost 

(Chen and Guestrin 2016) and scikit­learn (Pedregosa et al. 2011) packages. This model did 

not require a distinct validation dataset  for  training.  Instead a 10­fold cross validation  (Re­

faeilzadeh  et  al.  2009)  ensured  generalizability  on  the  data  set,  permuting  the  combined 
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training and validation subsets. The features for the gradient boosting model consist of the 

same underlying information (e.g., number of fixations) but aggregate it with respect to the 

total interval  length. Analogous  to  the  time  series, we used 𝐹𝛽=1.5  as  scoring metric  and 

chose the  intervals [0; 15] for start timestamps and  [20; 45] for stop timestamps. To find a 

good  set  of  hyperparameters  (colsample_bytree,  gamma,  learning_rate,  max_depth, 

min_child_weight,  n_estimators,  scale_pos_weight,  subsample)  a  randomized  search was 

performed for 100 trials on all possible start­stop combinations. 

2.4 Results 

Figure 5 shows two different prediction horizons (i) the first 25 seconds and (ii) the first 45 

seconds of the decision process. The 25­second horizon is based on the idea of making rec­

ommendations early in the product evaluation process. A recommender system would have 

enough time to generate content after a feature extraction phase of 25 seconds at the be­

ginning of the decision process. On average, the 45­second horizon covers the entire evalua­

tion phase and can be seen as the upper  limit for a recommender system to make sugges­

tions. 

              

Figure 5. The confusion matrices represent the best InceptionTime models for healthi­

ness preference predictions within the first 25 (left) and 45 (right) seconds. 

The best model  for  the entire prediction horizon of 45  seconds  (𝐹𝛽=1.5 = 0.62) did not 

use the full 45 seconds. It performed best when considering the time series from second 7 to 

43, with a step size of 9.0 seconds. This model correctly classified 87.05% of the unhealthy 

choices and 64.70% of the healthy choices.  
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The model for the shorter prediction horizon of 25 seconds does not perform much worse 

overall (61.17% correct unhealthy classification and 82.35% correct healthy classification). It 

achieved an 𝐹𝛽=1.5 score of 0.53. We  remind  the  reader  that with a beta of 1.5, we value 

recall higher than precision, i.e., finding most of the healthy choices has priority. This model 

considered the period from second 4 to 24 as a time series, using a start­stop interval of [4; 

24], and a step size of 1.0 second. It even correctly classified more healthy choices correctly 

compared to the best model for the 45­second prediction horizon.  

In contrast, the best performing XGBoost model achieved an 𝐹𝛽=1.5 score of 0.48, using a 

start­stop  interval of [0; 38].  It correctly classified 90.5% of the unhealthy choices but only 

47.1% of the healthy choices. With respect to the prediction horizon of 25 seconds, the best 

XGBoost model performed slightly worse with an 𝐹𝛽=1.5 score of 0.42, using a start­stop  in­

terval of [5; 21]. 

In Figure 6, we provide information about the effect of different start and stop values on 

the maximum 𝐹𝛽 classification performance. The left plot shows the average effect of differ­

ent start values. For our data, starting  in second 5 results  in the best average 𝐹𝛽 value. As 

expected, a decrease  in performance occurs when a  long onset duration  is omitted before 

feeding the model. The right plot shows the average  impact of different stop values with a 

peak at second 30. The positive trend for  later stop values  is also plausible, as more  infor­

mation becomes available over time. 

   

Figure 6. A timeline showing the average F­Beta value for healthiness preferences pre­

dictions regarding all evaluated start and stop values. 
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2.5 Discussion 

Although the amount of training data we used was  limited and the class distribution  im­

balanced, our work demonstrates a way to use gaze behavior, in our case the extracted fixa­

tions and gaze targets, as input for recommender systems. With the algorithmic adjustments 

regarding  the misclassification  of  the majority  class, we  can  clearly  answer  our  research 

question. Yes, with  reasonable performance  in  relation  to  the  limited amount of data, we 

can identify customers who buy healthy products early during their decision­making process 

in a virtual commerce scenario using the  InceptionTime deep  learning approach. However, 

we acknowledge  that current classification  rates are not production ready and continuous 

model improvement and data collection are required to eventually allow for accurate predic­

tions. 

Our main  aim was  to  correctly  classify  as many  samples  of  the minority  class  (healthy 

choices) as possible during the evaluation phase of the decision processes. For the given da­

ta  set, our  results  suggest  that a  time  series­based approach  like  InceptionTime  is a more 

appropriate classifier compared to the shallow XGBoost method. The  InceptionTime model 

with a 1.0 second step size and a start­stop  interval of  [4; 24]  is a promising predictor  for 

healthy and unhealthy product choices early in the decision process. This model showed that 

focal loss and the 𝐹𝛽 metric are effective measures to cope with the class imbalance inherent 

to the data set.  It achieved the highest 𝐹𝛽=1.5 score of 0.53  in our evaluation and correctly 

classified most of the healthy choices (14 out of 17) while generating nudges candidates (a 

fraction  of  customers  with  unhealthy  choices,  33  out  of  87).  The  extent  of  candidate­

generation could be adjusted by the β parameter for the evaluation metric (in our case we 

chose β=1.5 and argue that it was a good choice because the amount of nudge candidate 

seems to be appropriate).  

The best XGBoost model achieved an 𝐹𝛽=1.5 score of 0.48  in our evaluation.  It correctly 

classified  less than half of the healthy choices correctly  (8 out of 17) and generated only a 

small  number  of  nudge  candidates  (8  out  of  87). One  reason  for  the  lower performance 

could be  the  fact  that  the  scikit­learn  implementation  of  XGBoost  does  offer  a  focal  loss 

function. However,  recently Wang et al.  (2020)  implemented a  focal  loss  function  for  the 

XGBoost algorithm that may serve as drop­in replacement  in scikit­learn. A comparison be­

tween  InceptionTime and an XGBoost model with  implemented  focal  losses might offer a 
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more equitable benchmark and could potentially alter the results' significance. The XGBoost 

model  could  also  benefit  from  advanced  sampling  techniques,  such  as  creating  synthetic 

samples with  small deviations  from  the  real observations  (Chawla et al. 2002), but  this  is 

beyond the scope of this research. 

Regarding start values, the best  InceptionTime models started early  for both the 45 and 

the 25 second prediction horizon (second 4 and 7, respectively). Thus, it seems advisable to 

start the time series possibly early. Another viable option may be to decide on an individual 

case basis when the orientation phase ends, e.g., by detecting the gaze pattern which repre­

sents the first comparison of two products (Peukert et al. 2020). In terms of stop values, the 

results unsurprisingly exhibit a positive  linear  trend  for  the maximum 𝐹𝛽 score,  i.e., an  in­

crease  of  performance with  the  duration  of  the  prediction  horizon.  However,  the  graph 

shows a lot of variances around second 25, 30, and 40 and it might be counterintuitive that 

for the stop values after second 40, the maximum 𝐹𝛽 values mainly decrease. For earlier stop 

values, our  results show  that  the prediction quality can  remain  relatively good, e.g., when 

stopping after 24 seconds. The corresponding InceptionTime model correctly classified only 

one healthy customer less (out of 17) than the best InceptionTime model which had access 

to additional 16 seconds of ET data of the decision processes. This further supports the im­

portance of the early decision phase for the correct classification of healthy customers. 

An open question remains the choice of a possibly ideal step size. We evaluated many dif­

ferent step values, which cost a lot of (computation) time and energy. Finding and validating 

a better theoretical foundation, to explain for what reasons a certain overlapping technique 

should be applied, could prove very helpful. 

As theoretical contribution, our study confirms that  leveraging a complete time series of 

ET data and feed  it  into a convolutional network can be superior to treating the ET data as 

cross­sectional  data.  However,  the  performance  gain  in  comparison  to  a  basic  XGBoost 

model is only a first proof of concept and both the baseline and the classification model can 

further improve. 

Before closing, we reflect on ethical considerations, particularly with regard the use of our 

classification model  as  input  for  recommender  and  other  context­aware  AI  systems. We 

used gaze  information of our participants to  infer their willingness to buy healthy food and 

prioritized  healthy  purchases.  In  the  design  of  our  model,  we  accepted  a  bias  towards 

healthy  classification, what may  lead  to  a  nudge  for  a  certain  fraction of  customers who 
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would not necessarily appreciate suggestions  for a healthy product. We argue  that such a 

nudge would be ethically valid, as  it fosters socially desired behavior. However, there  is an 

ongoing debate in what situations nudging is desirable and when it should be avoided alto­

gether (Hausman and Welch 2010). In any case, “[c]hoice architecture, both good and bad, is 

pervasive and unavoidable, and it greatly affects our decisions.” (Thaler and Sunstein 2021, 

p. 252). 

From a technical standpoint, our study suggests that time series classification enables re­

al­time feature generation  for recommender systems using gaze patterns. Our results  indi­

cate that the  longitudinal point of view offers more relevant  information than aggregations 

to statistical moments that span over the whole decision period. We acknowledge that fur­

ther research and validation are needed to improve the reliability and generalizability of our 

findings. Nonetheless, we  hope  that  the  presented  approach  encourages  practitioners  to 

integrate recommender systems in virtual commerce environments. From our point of view, 

it is only a question of time until we experience various (most likely artificial intelligence as­

sisted)  tools which  support  and  improve healthy  food  choices based on  individual  sensor 

data. Overall, the use of suitable deep learning models, such as InceptionTime, could poten­

tially change the state­of­the­art  for developing personalized  interventions.  In combination 

with large language models, time series classification and cutting­edge deep learning meth­

ods are likely to transform user assistance as we know it today. Researchers and practition­

ers might think about further contexts beyond classic collaborative filtering, such as personal 

trainers  and  instructors, medical  advisors,  psychotherapeutic  treatments,  and more.  The 

presented approach could be applied everywhere where  learning about users' preferences 

or their decision processes  in general can be helpful. Therefore,  it seems advisable to con­

tinue with data acquisition, model evaluation, and workflow integration. 

2.6 Summary and Outlook 

We proposed to use an InceptionTime classifier to infer customer preferences during the 

evaluation phase of customer decision processes using gaze patterns. Our focus was on clas­

sifying customers who buy healthy products in a VR setup. The results show that Inception­

Time,  in  combination with  class  imbalance measures,  can  outperform  a  shallow  gradient 

boosting model  in  classifying  healthy  purchase  decisions while  generating  candidates  for 

healthy food nudges. 
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The main limitation of this study is the fact that our sample consists of only 516 purchase 

decisions, of which only 15.1% were made for healthy products. Deep  learning models are 

typically trained on much  larger datasets (Szegedy et al. 2016), and we believe that the full 

potential of deep  time series classification approaches will remain unexplored until such a 

large dataset becomes (publicly) available. However,  in order to collect such a dataset, the 

legal consensus regarding privacy concerns for ET data needs to be solidified. Another limita­

tion of this study  is that we only considered product  labels  (the most visually salient  infor­

mation) to classify products as unhealthy or healthy when defining the ground truth. Future 

research  could use more  fine­grained  information,  such  as  ingredient  lists  and nutritional 

tables. With detailed  information about  a product's  composition,  recommendations  could 

take additional aspects into account. A highly relevant example is the detection of allergies, 

e.g., many people are allergic to nuts. Consumers could decide whether to hide such prod­

ucts altogether or receive a multi­sensory warning when they focus on a critical product. 

Overall, we see several avenues for future virtual commerce focused research. One prom­

inent  concern  is  the  treatment  of  privacy  issues. Deliberate  actions,  such  as  body move­

ments or use of voice, can be controlled by the customers.  In contrast, the gaze as such  is 

less under consumer control and fundamental to decision­making. ET data can identify indi­

viduals and might  reveal unwanted personal aspects  (Cantoni et al. 2018). Thus,  research 

should invent, evaluate, and reflect on different suitable (pseudo) anonymization techniques 

(Steil et al. 2019). Privacy research enables device vendors and digital commerce providers 

to avoid pitfalls and fosters trust among customers. The nudge aspect of this work is another 

route  to  follow. Healthiness  is only one aspect of socially desirable behavior but  there are 

further areas, such as sustainable consumption, which could be  investigated by  further re­

search. 

Regarding data collection, upcoming studies should include a broader variety of available 

information. Pupillometry and additional bio sensors seem to be a promising source for addi­

tional  input  features  (Halbig  and  Latoschik  2021).  Furthermore,  time  series  classification 

evolves quickly and new classifiers emerge frequently, e.g., InceptionFCN (Usmankhujaev et 

al. 2021) or TapNet (Zhang et al. 2020). These models may have the potential to yield better 

classification rates and should be compared with the presented results. 

Future  research should predict  further dependent variables and showcase a real recom­

mendation pipeline. In addition to healthy products, we argue that brand and flavor prefer­
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ences are particularly  interesting. Such a follow­up study should rethink the  large­scale hy­

perparameter  searches.  These  searches  do  not  necessarily  enumerate  all  presented  start 

and stop value combinations as presented in this study. Instead, it should benchmark differ­

ent algorithmic design aspects, like predicting preferences for new customers only or limiting 

the  feature set, which would provide  further managerial  insights. Next, a  follow up should 

introduce  a  better  baseline,  e.g.,  by  comparing  InceptionTime with previously mentioned 

deep learning time series classification methods. Overall, we suggest iterative improvements 

by means of ongoing experiments with the latest sensor technology available, such as elec­

troencephalography (event related potentials),  facial  features, body posture, pupil dilation, 

and maybe  functional near­infrared spectroscopy  (fNIRS). With all measures combined, we 

expect  the predictive performance and validity to  improve significantly  (unfortunately,  the 

same  is  true  for complexity). From our perspective, a  long­term goal  should be  to hone a 

publicly  available machine  learning  pipeline,  similar  to  the presented one,  and  ultimately 

showcase  it as  real­time  feature generator  for a  recommender system  in  real virtual com­

merce setups. 
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3 Paper B:  Consumer Decisions  in Virtual Commerce: Good Help­

timing and its Prediction based on Cognitive Load 

Tobias Weiß and Jella Pfeiffer 

Abstract 

The retail sector is steadily moving towards virtual commerce (v­commerce) and the pro­

cess has  recently gained momentum. With  the  latest developments  in headset  technology 

and  the  rise  of  artificial  intelligence,  virtual  shopping  becomes  relevant  for  an  increasing 

number of products.  In  this paper, we present a  study  that  combines  consumer behavior 

research, eye tracking, electrocardiography, machine learning, and the application of virtual 

reality.  Fifty  participants were  invited  to  experience  a  virtual  scenario,  perform multiple 

mentally demanding tasks, and make a purchase decision for a product from one of two dif­

ferent product categories. In a post­hoc video analysis based on the first­person view, partic­

ipants determined different points in time when they would have appreciated help from an 

algorithmic user assistance system or a digital human agent. Our statistical analysis suggests 

that  the desired help  timing depends on  the product  category. For  fast­moving  consumer 

goods,  algorithmic  help was  requested  particularly  early.  Furthermore, we  collected  eye 

tracking and electrocardiographic data to build and evaluate a predictive classification model 

that differentiates between three  levels of cognitive  load. The trained machine  learning al­

gorithm aims to classify cognitive load during decision­making, which may indicate the right 

time to offer help. Our findings provide evidence that particularly eye movements allow ser­

vice providers to determine a good moment to approach consumers during their shopping 

experience. 

 

Keywords: Consumer Behavior, Decision Making, Eye Tracking, Electrocardiography, Ma­

chine Learning, Metaverse, Virtual Commerce, Virtual Reality 
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3.1 Introduction 

The popularity of online shopping has transformed traditional brick­and­mortar stores in­

to highly  competitive  virtual marketplaces  (Bourlakis et al. 2009). While  technological  ad­

vances provide new opportunities for consumers to visualize and experience their environ­

ment, new  business  rules  pose  challenges  for  retailers  seeking  to  provide  engaging  and 

meaningful experiences (Reinartz et al. 2019). With the proliferation of immersive technolo­

gies such as virtual reality (VR), the idea of the Metaverse continues to fascinate many peo­

ple.  For  immersive  shopping  scenarios,  knowledge  about  cognitive  processes  can  help  to 

design highly personalized user assistance systems  (UAS). Decision support systems are an 

elemental  tool  for  retailers  that  can  severely  impact  their  business  success  (Shim  et  al. 

2002). As a subclass, UAS can be seen as joint element which “bridge[s] the gap between the 

system’s functionalities and the human’s individual capabilities with the goal of positively 

influencing task outcomes” (Morana et al. 2020b, p. 189).  

Due to  the need  for  enhanced  consumer  experiences,  several  studies  suggest  that  the 

provision of personalized user assistance will become highly relevant in v­commerce scenar­

ios  (Guo  and  Elgendi  2013;  Zhang  et  al.  2013;  Chen  and  Yang  2022).  UAS  in  e­  and  v­

commerce  include  conversational  agents  (Heßler  et  al.  2022),  recommendation  systems 

(Xiao and Benbasat 2007), and virtual assistants (Raut et al. 2023). In general, user assistance 

leverages analytics, data, and technology to help consumers make informed decisions about 

various aspects of their purchases. Examples of algorithmic help offerings include displaying 

the most relevant product reviews from other consumers (Pan and Zhang 2011) or assisting 

with interactive decision aids (Häubl and Trifts 2000; Pfeiffer 2011). 

With the ability to collect data on neurophysiological responses in VR, new opportunities 

arise to create intelligent UAS that adapt to the individual’s state. Machine learning (ML) 

plays a crucial role when building these new UAS as it provides the basis for an artificial intel­

ligence (AI) steering the system. An  intelligent, ML­based, adaptive system can  learn about 

consumer  search motives  (Pfeiffer  et  al.  2020)  using  eye  tracking  (ET).  Among  latest  VR 

headsets, the most common biosensors are ET cameras. For this reason, we utilize ET as the 

main neurophysiological sensor to detect visual attention and predict cognitive  load. How­

ever, recent research­grade VR headsets offer further data sources, like electrocardiographic 

(ECG) sensors, and we forecast that a variety of different sensors will be available, as well as 
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additional wearables. For example, electroencephalography (EEG) earbuds (Athavipach et al. 

2019) for which a major tech company recently patented a design for. 

One  aspect  that might help  to  create a  good, highly personalized user experience  (and 

therefore  impact the success of  these sales  interactions)  is the time when consumer assis­

tance  is  invoked  (Friemel et al. 2018). Adequate timing can influence consumers’ attention 

(Bailey and Konstan 2006), perceived relevance, trust, urgency, and could be an enabler for 

UAS providers to beat the competition (Meurisch et al. 2020). Peukert et al. (2020) outlined 

how  important  it  is  to display a UAS with a good  timing. They proposed a decision­phase­

based detection algorithm and compared it with previously suggested decision phase models 

(Gidlöf et al. 2013; Russo and Leclerc 1994). However, they used simple gaze pattern rules to 

determine the phases, such as the first refixation on a product. A good timing to approach a 

consumer, however, depends on  several  factors,  including  their mental  state  (e.g.,  in  the 

form of cognitive overload, personality, and habitual purchasing patterns). By carefully tim­

ing  interactions, we claim that both consumers and providers can benefit due to the avoid­

ance of dissonance between intended help offering and, in the worst case, perceived annoy­

ance. While further previous work focused on assistance timing in generic software interface 

tasks, like finding appropriate software functionalities to alter an image (Ginon et al. 2016), 

this  study  is  particularly  geared  towards  the  consumer  decision­making  context  in  v­

commerce. 

In this paper, we investigate cognitive load and its capability as an indicator to determine 

a good timing to engage with consumers in a shopping scenario. Previous work has identified 

cognitive load as a key mental state for decision­making (Deck and Jahedi 2015). In line with 

findings from the educational domain (Vaessen et al. 2014), we hypothesize that high levels 

of cognitive load can make it more difficult for consumers to understand and solve decision 

problems on their own, leading them to seek help (in form of an algorithmic support system 

or a digital human agent,  i.e., a human sales representative controlling an avatar  in the vir­

tual shopping environment). Low levels of cognitive load might increase consumers’ confi-

dence and ability to solve problems independently, reducing the likelihood that they seek or 

appreciate help but rather want to browse the store  independently. We argue that by esti­

mating the cognitive load level during a consumer’s purchase decision, it might be possible 

to determine a good timing to start an  interaction. To account for varying  levels of product 

knowledge, we employ  two distinct products  from  two different categories: a  fast­moving 
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consumer good and a technology product. We expect differences between the product cat­

egories regarding desired help timing. Thus, the research questions read as follows: 

1) When is the desired help timing for algorithmic user assistance compared to the 

desired help timing for a digital human agent in different shopping scenarios? 

2) How does product knowledge influence the desired help timing? 

3) Is desired help timing related to cognitive load and if yes, how can cognitive load 

be used to determine a good intervention timing? 

We investigate these questions in an experimental VR environment, which gives our study 

particular  relevance  in  the  light  of  latest  developments  in  the  retail  domain  towards  v­

commerce. VR can  improve consumer experiences  (Moghaddasi et al. 2021) and offer high 

external validity while maintaining experimental control (Meißner et al. 2019). Furthermore, 

the used high­end VR headset allows us to collect gaze patterns and pupillometry  in an un­

obtrusive and precise way. To answer our questions, we draw from two data sources. Both, 

ET  and  ECG,  serve  as  an  indicator of  cognitive  load  (Haapalainen  et  al.  2010).  This paper 

mainly builds upon two works. First, Peukert et al. (2020) have used ET to distinguish deci­

sion phases by using simple gaze patterns. These phases might indicate a good point in time 

when users seek help but a connection between decision phases and help  timing was not 

investigated  in  their  paper.  Second,  Pfeiffer  et  al.  (2020)  have  estimated  search motives 

based on fixations and their statistical moments. To complement the fixation data, we addi­

tionally include blinks, saccades, and pupillometry into the feature set. Additionally, we use 

ECG as secondary neuro­physiological sensor. We extend this existing stream of literature on 

consumer behavior  in VR by  focusing on  the desired  support  type  and  good  intervention 

timing.  

Our contributions are twofold. First, we show that desired help timing depends on wheth­

er  the help  is provided by an algorithmic user assistance system or a digital human agent. 

The desired help timing also depends on the product category being purchased. As a result, 

when designing good shopping assistance, companies should be aware of this heterogeneity 

and strive for a high degree of personalization and context­awareness of the shopping situa­

tion. Second, we  investigate cognitive  load as an  indicator  to estimate  the  timing of assis­

tance by using ET and ECG. The study demonstrates how ET and ECG can be used as features 
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for  shallow and  interpretable ML models  to predict optimal assistance offers. Overall,  this 

article emphasizes the transformative nature of v­commerce and the high relevance of  lev­

eraging  the  recently  available  extended  set  of  biosensors. We  provide  valuable  practical 

guidance on how to approach the v­commerce transition and take advantage of the techno­

logical opportunities. 

3.2 Related Work 

3.2.1 Cognitive Load 

The mental effort or capacity required to process and understand information is referred 

to as Cognitive  Load  (CL). Originating  in psychology and education, Cognitive  Load Theory 

(CLT)  explains  how  the  human  brain  processes  information  during  learning  and  problem­

solving (Plass et al. 2010; Sweller 2011). CLT suggests that humans have a limited amount of 

mental capacity  (Miller 1956) and  that  the difficulty of a  task can affect how much of  this 

capacity  it  occupies.  Furthermore,  CLT  can  be  applied  to  decision­making when  choosing 

among  several options  (Deck and  Jahedi 2015).   For measuring CL, a variety of biosensors 

and ML techniques are available (Seitz and Maedche 2022). To minimize the negative impact 

of CL on decision­making, it is a viable option to simplify decision­making processes and re­

duce  the  amount  of  information  that must  be  processed  at a  time  (Todd  and  Benbasat 

1994). Today’s software solutions can reduce CL and improve decision making by providing 

help  from  a  virtual  agent  (Brachten  et  al.  2020).  Another  option  is  breaking  down  over­

whelming decision­making tasks into smaller, more manageable parts. Still, task optimization 

and atomization are no panacea. Even  if the amount of options  is  limited, empirical results 

suggest that high CL levels can negatively impact the quality of decision­making (Allen et al. 

2014; Dewitte et al. 2005). These studies consistently showed how a high CL level can lead to 

an  increased  likelihood of making errors  in different  task arrangements. Given  this critical 

relation between CL and  increased error rates,  it  is not surprising that marketing and shop­

ping contexts are  important domains to apply CLT  (Schmutz et al. 2010; Grzyb et al. 2018; 

Wang  et  al. 2014).  For example,  a CLT­informed UAS can improve consumers’ abilities to 

understand  and process  information  about  a product  or  service  they  consider buying. By 

reducing CL, product vendors can foster a positive shopping experience for their consumers. 

Building on the CLT principles, shop providers can actively design a UAS that increases their 
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consumers’ motivation and ability to seek help when needed. By making it easier for con-

sumers to seek help when needed, or even offering the  required help with perfect timing, 

companies  can  improve  consumer  satisfaction and  reduce  costs associated with providing 

assistance (Caruelle et al. 2023). Overall, CLT can provide a basis for understanding how dif­

ferent levels of CL influence consumers’ motivation and ability to seek help. We hypothesize 

that after an initial exploration/orientation phase, consumers want to mitigate the imposed 

CL burden and value customer support. We further believe that CL can help to  identify the 

moment when  consumers  engage with  the  product,  viewing  and  comparing  attributes  or 

details. Such behavior  indicates an  increased  likelihood of open questions. These questions 

could be answered by an algorithmic support system or a digital human agent. 

3.2.2 Eye Tracking 

Gaze patterns are suitable  to  track visual attention  (Duchowski 2017), but  their analysis 

relies on the eye­mind hypothesis by Just and Carpenter (1980), which assumes that human 

cognitive processes can be observed by their associated gaze patterns. However, it is evident 

that  individuals can deliberately  look at a certain position while  thinking about  something 

else  (Anderson et al. 2004). Nonetheless, experimental  findings  indicate  the validity of the 

eye­mind hypothesis  in numerous scenarios  (Holmqvist et al. 2011).  Important movement­

related gaze metrics are  fixations and saccades. A  fixation  is a stationary state of the eyes 

and  can  last  from milliseconds  to  seconds, while  saccades  are  rapid  eye movements  be­

tween fixations. 

Pupillometry investigates the changes in pupil dilation and frequently serves as estimator 

for CL (Kahneman 1973; Holmqvist et al. 2011; Hess and Polt 1964). In natural environments, 

pupillometry is not reliable for determining CL because small deviations in the lighting condi­

tions have a  strong  impact on pupil dilation  (Laeng et al. 2012).  In a virtual environment, 

experienced by an  individual using a VR headset,  lighting  confounds  can be mitigated be­

cause the closed HMD cover offers fully controllable scene lighting. 

3.2.3 Electrocardiography 

ECG records the electrical activity of the heart, which emits a group of waves called PQRST 

(Goy 2013). Research has applied ECG to  investigate various aspects of consumer behavior 

and is commonly used in combination with other biometric tools (Harris et al. 2018). Human­
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computer interaction research assesses additional factors, such as the usability of user inter­

face  design  (Lee  and  Seo  2010)  and  emotional  engagement with  presented  information 

(Ferdinando  et  al.  2016).  ECG  can  serve  as  an  indicator  for  CL  (Haapalainen  et  al.  2010; 

Hughes et al. 2019). Data collection  is  typically performed with high  frequency using elec­

trodes that are attached to the skin. 

3.2.4 Virtual Reality 

In VR, the real­world environment is replaced as comprehensively as possible. A main goal 

of  VR  is  to  create  realistic  but  completely  virtual  experiences with  a  high  level  of  (tele­

)presence  for  the  users  (Cummings  and  Bailenson  2016).  An  early  head­mounted  display 

(HMD), as it is common today, was already developed by Sutherland (1965). Another option 

to  create  virtual  spaces  is a CAVE automatic  virtual environment  (a  recursive  acronym), a 

cube­shaped  room with projections on  its walls  (Cruz­Neira et al. 1992). Today, HMDs are 

common, and some models can even show mixed reality, which means everything on a spec­

trum  from slightly augmented  to  fully  immersive experiences.  It  is possible  to combine an 

HMD with a variety of different sensors and cameras, particularly ET  (Pfeiffer et al. 2020), 

which  leads to many  interesting research opportunities. Moreover, VR mitigates the trade­

off between experimental control and ecological validity (Meißner et al. 2019). 

VR has changed  the  landscape of v­commerce, ushering  in a new era of  immersive and 

personalized shopping experiences  (Evans and Wurster 1999). The technology might trans­

form  the way  consumers  interact with products and purchase  them online by providing a 

more engaging and lifelike representation. VR showrooms allow customers to view products 

in three dimensions, enabling a more informed decision­making process. In addition, VR has 

enhanced  the social aspect of v­commerce  through shared virtual spaces where  friends or 

family can shop together and share opinions in real time (Zhang et al. 2014). A recent review 

by Branca et al.  (2023) provides a comprehensive overview of different  literature  streams 

that address v­commerce. The authors identify four key research streams: customers, prod­

ucts, product testing, and VR compared to other conditions. As our study mainly focuses on 

desired help timing, it fits into the customer category. However, we propose to introduce a 

fifth label called sales agents which covers related research. We argue that the interface be­

tween provider and consumer is a key success factor which needs increased attention. Table 

2 provides  a  list of  selected previous  customer behavior  experiments  in VR.  It briefly de­
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scribes the experimental setups, contributions, and allows the reader to understand the con­

tribution and positioning of our article. 

Table 2. Related VR experiment categorization. 

Study  Setup  Contributions 

Bigné  et 
al. (2016) 

N=41 
CAVE 
ET data 
Spatial data 
Questionnaire 
 

This study  investigates brand preferences for fast food products 
and suggests that high attention to a brand and slow eye move­
ments between brands  lead  to additional brand purchases. The 
applied method consists of regressions with aggregated parame­
ters related to the entire decision­making process. 

Martinez­
Navarro 
et  al. 
(2019) 
 

N=178 
HMD 
Questionnaire 
 

The authors  compare  the effectiveness of different VR  formats 
and devices. They  find  that  virtual  stores  are more effective  in 
generating cognitive and conative responses. They apply a struc­
tural equation model  that suggests a dual path via brand  recall 
and presence which both influence consumers’ purchase inten-
tion in virtual stores. 
 

Meißner 
et  al. 
(2020) 

N=132 
HMD 
Questionnaire 
 

This  article  compares  high  immersive  (using  a  HMD)  and  low 
immersive  shopping  environments  (using  a  desktop  computer) 
and examines consumers’ variety­seeking, price  sensitivity, and 
choice  satisfaction.  In  an  incentive­aligned  choice  experiment, 
participants make  repeated purchase decisions  for cereal prod­
ucts.  The  statistical  analysis  suggests  that  consumers  are  less 
price  sensitive and  seek more variety  in highly  immersive envi­
ronments. 
 

Pfeiffer 
et  al. 
(2020) 

N=50 
CAVE 
ET data 
Questionnaire 
 

The  authors  investigate  two  classic  shopping  motives:  goal­
directed  search  and  exploratory browsing.  They  compare deci­
sions in a real­world supermarket with decisions in a virtual reali­
ty  supermarket. They collect ET data on which  they  train  three 
shallow ML models. They  found  that an ensemble method  can 
classify the two motives with about 90% accuracy. 
 

Alzayat 
and  Lee 
(2021) 

N = {48, 35} 
HMD 
Questionnaire 
 

Using  two VR  stages  and  an Amazon mturk  questionnaire,  the 
authors  investigate  the  differences  in  hedonic  purchase  value 
between a VR  retail environment and a website. Their analysis 
comprises three structural equation models. The results suggest 
that  a VR  retail  environment  is more  appropriate  for  products 
that are perceived as an extension of the body (e.g., tools) rather 
than a representation of the body (e.g., clothing). 
 

Huang  et 
al. (2021) 

N=80 
HMD 
Brain activity 

This article focuses on search behavior, which  is  involved  in the 
evaluation phase of each decision­making process. The authors 
investigate  the  congruence  or  incongruence  between  text  and 
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Questionnaire 
 

color  of  flavor  labels  on  product  packaging.  They  provide  evi­
dence for a color­flavor incongruence effect in visual search and 
correlate  it  to  the  violation  of  user  expectations.  The method 
involves subsequent VR and fMRI phases, which the authors ana­
lyze using multiple  regressions and  regional homogeneity anal­
yses, respectively. 

     
Park  and 
Kim 
(2021) 
 

N = 196 
HMD 
Questionnaire 
 

This  research  examines  how  offering  a  virtual  try­on  in  Aug­
mented  Reality,  a  3D  store  on  a  desktop  computer,  and  a  VR 
store affect consumers' purchase intentions. The study also ana­
lyzes  how  thinking more  deeply  about  an  item  influences  the 
decision­making process in different shopping scenarios (search­
ing  versus  browsing).  Results  indicate  that  purchase  intentions 
are  highest  when  participants  browse  in  the  VR  condition.  A 
moderated mediation analysis supports the hypothesis that cog­
nitive  elaboration mediates  purchase  intentions  for  those  con­
sumers in the browsing mode, while such a mediating effect was 
absent in the searching mode. 

     
Schnack 
et  al. 
(2021) 

N = 36 
HMD 
EEG data 
Spatial data 
Purchase data 
Questionnaire 
 

This  study  compares  instant  teleportation with motion­tracked 
walking  in  VR  and  investigates  whether  different  locomotion 
techniques  correlate  with  altered  shopping  behavior.  Using  a 
split­sample  experimental  design,  the  authors  apply  electroen­
cephalography (EEG) to track emotional states such as stress.  In 
the scenario, participants experience a VR grocery store. Overall, 
the results suggest that different locomotion techniques have no 
impact on the consumers’ emotional state and engagement. 
However,  different  spatial  movement  patterns  are  noticeable 
when comparing the different conditions. 
 

Harz  et 
al. (2022) 

N = 210 
HMD 
Questionnaire 
 

The authors report on a combination of a real­world field study 
which is followed by a laboratory experiment. They examine how 
durable goods companies can use VR  for new product develop­
ment, and how VR can improve pre­launch sales forecasting. One 
of the three experimental conditions takes place in VR, the other 
conditions take place online and in the real world. The analysis of 
variances suggests that sales forecasting in VR provides the most 
accurate predictions compared  to  the other conditions. Moreo­
ver, it confirms the first evidence of the field study that VR corre­
lates with a more consistent consumer behavior, and that virtual 
reality might create superior behavioral consistency compared to 
the real world. 
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Our work  N = 50 

HMD 
ET data 
ECG data 
Questionnaire 
 

In  contrast  to previous work, our  study  focuses on  the desired 
help timing in a VR scenario for an algorithmic UAS versus a digi­
tal  human  agent.  As  second  dimension, we  compare  technical 
products  (3D printers) with  fast­moving consumer goods  (wash­
ing  powders). We  present  the  statistical  analysis  of  our  ques­
tionnaire  and  apply  a machine  learning  approach  to  identify  a 
good  intervention  timing.  During  our  experiment,  participants 
solve  CL  inducing  tasks  before making  a  purchase  decision.  ET 
and  ECG  provide  the  features  for  an ML  classifier. Algorithmic 
help was  requested  particularly  early  for  the washing  powder. 
The results further indicate that CL­based classification works for 
the desired help timing of an algorithmic UAS but not for a digital 
human  agent.  The  approach  could  be  refined  to  invoke  an  AI 
agent  based  on  a  fine­tuned  LLM,  who  has  in­depth  product 
knowledge. 

     

3.3 Method 

3.3.1 Experimental Design 

The experimental setup was based on a virtual showroom  in VR. Participants performed 

generic CL  tasks of  three difficulty  levels and a subsequent purchase decision. The experi­

ment  focused on  the utilitarian aspect of  consumer behavior, as we asked participants  to 

make decisions based on a set of criteria, leaving little room for their own hedonic motives. 

A web­based questionnaire on a desktop computer complemented the VR recordings. For all 

experiment sessions, we collected ET and ECG data. 

To answer the first research question, we examined consumers' desired help timing for an 

algorithmic UAS versus a digital human agent. To identify potential differences across prod­

uct  categories, we  used  two  product  sets  of  four  items. One  set  represented  technology 

products (3D printers) and the other set represented fast­moving consumer goods (washing 

powders). We asked participants to identify good intervention timings for the two different 

types of help providers, an algorithmic UAS and a digital human agent, because participants 

might perceive relevant differences  for these help providers. We argue that an algorithmic 

UAS may appear earlier during a decision­making process compared to a digital human agent 

because  it  is comparatively  inexpensive. For the intervention of a digital human agent, tim­

ing is critical because it translates into substantial costs for human resources on the seller’s 
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side. Providers should therefore be confident that an engagement is desired and that it takes 

place at the appropriate time. 

As an exploratory aspect related to the first research question, we also wanted to identify 

the specific desired help type for algorithmic user assistance. In other words, do users prefer 

interactive  decision  aids,  recommendations,  or  other  algorithmic  help  types?  This  insight 

may guide practitioners in deciding which system type to implement in a certain scenario. 

To investigate the second research question, we compared participants’ product 

knowledge  for  the different product categories and examined  its  relationship with desired 

help times. We expected low product knowledge for the 3D printers because they are niche 

products, whereas a broad  range of participants should be  familiar with different washing 

powders. However,  it was not clear what effect this  (un­)familiarity would have on desired 

help times. 

To control for possible confounding, we collected the participants’ demographic infor-

mation, personality traits, and their general attitude toward sales representatives. We also 

asked  the participants  about  their  product  involvement but  expected  little  difference  be­

cause the monetary incentive for solving the purchase task was the same in both the wash­

ing powder and 3D printer scenarios. 

To answer our third research question which aims to increase the understanding of CL in 

relation to the point in time when consumers want help, we measured CL levels that partici­

pants experienced when solving three generic tasks of low, middle, and high complexity be­

fore transitioning to the actual purchase task. To verify the difficulty levels, we controlled for 

subjectively perceived complexity during the generic tasks. Using the recorded ET and ECG 

data, we trained an XGBoost model to predict the CL level during a short period prior to the 

desired help timing.  

All virtual scenes were implemented using the Unity 2021.3 game engine. Participants ex­

perienced our virtual environments using a Varjo VR 3 HMD with Valve  Index  controllers. 

This headset offered high­frequency ET capability with a sampling rate of up to 200 Hz, and 

its display resolution of 2880×2720 pixels per eye led to high visual immersion. The ET sensor 

was calibrated at the beginning of each experiment stage using a five­dot calibration proto­

col. For ECG  recording, a wireless bioPLUX device  captured  signals  throughout  the experi­

ment with a sampling rate of 1000 Hz. To be able to clarify possible confounds post­hoc dur­

ing data analysis, we additionally recorded all experimental sessions on video using a room 
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camera.  Overall,  the  experiment  followed  a  between­subjects  design  (regarding  the  two 

product categories) and  included several questionnaire parts which alternated with the VR 

stages. Mandatory VR breaks for the questionnaires had additionally reduced the risk of cy­

bersickness (Davis et al. 2014) and exhaustion of the participants within the VR environment.  

3.3.2 Participants 

Our  self­hosted online  registration platform  (Bock et al. 2014) helped  to  recruit partici­

pants and manage the experiment sessions. Additionally, we actively solicited participation 

from students on our campus. Participation requirements were an age between 18 and 65 

years and good  command of English and German. Furthermore, we only accepted partici­

pants with normal or corrected­to­normal vision. Participation compensation was 10 Euros 

fixed plus a performance­based component of up to 5.5 Euros. After arriving at the lab, par­

ticipants signed a consent form. It ensured the participants’ basic knowledge of the experi-

mental procedure, informed them that the experiment complied with ethical standards, and 

required  them  to  grant  the permission  to  publish  their  pseudonymized  data  as  an  open­

source dataset. 

3.3.3 Behavioral Measurements 

We measured all questionnaire items on a 7­point Likert scale. In terms of demographics, 

we tracked participants’ age, gender, and occupation. To estimate personality traits, we 

used the BFI­10 short scale (Rammstedt et al. 2013) which allows for the evaluation of per­

sonality traits with acceptable validity  in a compact manner. We measured the general de­

sire to interact with a salesperson using eight items validated by Lee and Dubinsky (2017). To 

collect  self­assessments  about  CL,  for  both  the multitasking­stage  and  decision­stage, we 

asked participants  to answer  the  six  item NASA Task Load  Index  (TLX) questionnaire  (Hart 

and Staveland 1988; Hart 2006). Overall,  four TLX batteries were collected per participant, 

one for each of the three generic CL task difficulty levels and one for the purchase decision. 

The product knowledge scale, consisting of three  items, was adapted from Park and Moon 

(2003) to fit the presented products (see appendix). Moreover, the questions regarding par­

ticipants’ product involvement comprised 20 bipolar items (Zaichkowsky 1985). 
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3.3.4 Neuro­Physiological Measurements 

To generate features for the ML model from the collected sensor data, we aggregated the 

raw ET and ECG recordings. The extracted features are listed in the supplemental Table 7 for 

ET features, and in supplemental Table 8 for ECG features.  

For  the  ET  data,  we  utilized  both  gaze­based metrics  and  pupillometry.  Gaze  events, 

namely  fixations,  saccades, and blinks were created using a velocity­based algorithmic ap­

proach (I­VT) as described by Salvucci and Goldberg (2000). For saccades, we set 50°/second 

as the  lower angular speed threshold (Holmqvist et al. 2011). We  limited fixation durations 

to 0.1  seconds as  the  lower  threshold and 10  seconds as  the upper  threshold  (Duchowski 

2017). After  creating  the  gaze  events, we  aggregated  statistical moments  to determine  if 

attention was directed to different areas of  interest  (AOI,  for example a product) and how 

often attention shifted between different AOIs. For pupillometry, we used the pupil­iris ratio 

of the dominant eye and complemented the gaze events with this information. 

Using the raw ECG data, we extracted time­ and frequency­domain­related features that 

covered different aspects of the heart rate and  its variability  (HRV)  in  linear and nonlinear 

representations (Xiong et al. 2020; Chanel et al. 2019; Pham et al. 2021). Regarding ECG fea­

ture selection, we rely on a recent review that covers the “most up­to­date and commonly 

used HRV indices” by Pham et al.  (2021). Due to our relatively short task periods, some of 

the  common HRV measures  could not be  investigated,  such as  the  standard deviations of 

average heartbeat intervals (SDANN) which compare longer segments (by default 1, 2, and 5 

minutes). 

Overall, a crucial step for feature engineering was setting the time window size because it 

determined how the features were aggregated. For the ET related features, we evaluated 6 

different window sizes (3, 5, 7, 10, 15, 30 seconds, where 30 seconds is the full trial duration) 

which yielded equally long segments without overlapping or artificial padding.  

Further assumptions are necessary  for  the ET post­processing. An average  fixation  lasts 

about 0.3 seconds (Holmqvist et al. 2011) and average blinks and saccades are even shorter. 

Thus, we argue that 3 seconds yield enough data to calculate meaningful statistical moments 

in many cases. Considering  increasing window sizes makes sense because CL might not be 

present  from the onset of  the task. Comparing different parts of a  trial could yield a good 

contrast, such as the first versus the second half of a trial.  
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For ECG measurements, we only considered the full trial length (30­second windows). For 

shorter periods, only a  limited set of  features  is computable, such as heart  rate variability 

(HRV), while several features from the frequency domain and nonlinear domain suffer from 

numeric instabilities. 

3.3.5 Procedure 

The experiment lasted approximately 80 minutes, and it consisted of five different stages, 

as  shown  in  Figure  7.  The  stages were  streamlined with  a web­based questionnaire on a 

desktop computer which alternated with the VR scenes and guided participants through the 

different  stages  from  start  to  end.  During  the  pre­stage,  our  participants  completed  an 

onboarding  procedure  and  answered  general  questions.  A multitasking­stage  followed  in 

which participants performed nine generic CL  tasks  (with  three  levels of complexity: easy, 

medium, and hard). A decision  stage  followed,  in which participants made a product pur­

chase  to meet a  list of given criteria. A video­analysis­stage  followed during which partici­

pants  retrospectively analyzed  their  first­person view during  the purchase decision. A  final 

post­stage,  in which participants went  through our offboarding procedure,  concluded  the 

experiment. 

3.3.5.1 Pre­Stage 

We assigned arriving participants  randomly  to one of  two groups by  flipping a coin and 

started the corresponding questionnaire on the computer. In the subsequent decision­stage, 

Group A was  assigned  to  decide upon 3D  printer  products  and Group B was  assigned  to 

washing powder products. A welcome screen explained the general purpose and modalities 

of the experiment. Before continuing, we asked the participant to read and sign our consent 

form. Only after accepting the terms of the experiment, participants were asked to provide 

demographic data, information about their personality traits, and to answer questions about 

their general attitude towards salespersons. Next, we determined their dominant eye using 

the Miles test (Miles 1929). For electrocardiographic data acquisition, we asked participants 

to go  to the restroom and  to attach electrodes to  their body according to a reference pic­

ture, and to connect them to the transmitter. We decided to triangulate the heart in a wide 

triangle, spanning from the shoulders to the hip, to receive a high­quality signal that  is ro­

bust to noise caused by body movements. 
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Next, we explained the VR hardware, controller usage, ET calibration procedure, and the 

upcoming task. Then we  familiarized participants with movement, teleportation, and  inter­

action using a training environment very similar to the subsequent task environments. The 

training scene consisted of the same showroom which was later used for the CL and decision 

environments. Participants were asked  to use two  in­world buttons which  invoked the ap­

pearance  of  example models,  one  low­quality model with  low  polygon  count  and  single­

colored  texture and one high­quality model with high polygon count and high­fidelity  tex­

ture. Additionally, participants were asked to interact with a menu that started a timer and 

transitioned to the next stage after successful activation. 

 

Figure 7. Experiment procedure. 

3.3.5.2 Multitasking­Stage 

To generate different generic CL levels, we designed a gamified CL task with three difficul­

ty  levels, as shown  in Figure 8. This task was  inspired by the work of Siegel et al. (2021).  It 

consisted of  three components – ball  tracing, arithmetic, and  rotation  tracing.  In  the easy 
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variant, participants had  to trace one out of  five moving balls. The target ball was colored 

red for 10 seconds. Afterwards, the trial began, and the target ball changed its’ color to the 

same  gray  as  the other  four balls. All  five balls moved  around pseudo­randomly within  a 

predefined area for 30 seconds. Finally, all balls stopped moving and displayed an identifying 

number. Participants then had to press a button labeled with the corresponding number to 

indicate which ball they considered as the target.  

Figure 8. Multitasking VR environment. 

A text message informed the participants whether the answer was correct or not, and the 

task was reset after a short waiting time. The medium variant was more difficult as it  includ­

ed the easy variant but additionally introduced an arithmetic component. To the right of the 

ball tracing area, small pseudo­random numbers (ranging from ­10 to 10) appeared sequen­

tially on the wall within a pseudo­random time  interval and  the participants had to aggre­

gate  them, while still tracing  the ball  in parallel. At  the end of each trial, a slider was pre­

sented with which  the  calculated  sum  could  be  entered.  An  additional  text message  in­

formed the participants whether the answer was correct or not. The hard variant was even 

more difficult as it included the medium variant but additionally introduced a rotation track­

ing component. To the left of the ball tracing area, a spinning logo appeared which changed 

its rotational direction between clockwise and counterclockwise within pseudo­random time 

intervals. Participants had to count the amount of rotational direction changes,  in addition 

to  the ball  tracing and arithmetic  components. After  the 30  seconds of  trial  time, partici­
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pants saw an additional slider to enter the counted number of rotational direction changes. 

All difficulty levels were repeated three times, and we incentivized the correct completion of 

each trial by increasing participants’ performance­based  extra payment by 0.5 Euro,  if  all 

components of a  trial were answered correctly. Before  these  real  trials started, all partici­

pants performed a  training  round  in which  they experienced  the hard variant but without 

monetary  incentive. During  the  training  round,  they  could  familiarize  themselves with  the 

task and ask questions. However, repetition was not possible. Then they began with the easy 

variant, followed by the medium and hard variant, until all nine trials were completed. Af­

terwards,  participants  took  a  VR  break  and  continued  the  desktop­based  questionnaire 

which sequentially asked for their perceived task difficulty for all three levels. 

3.3.5.3 Decision­Stage 

Both groups were presented with different task descriptions to create a realistic situation. 

Group A was asked to imagine being part of a board game designer team who needed a 3D 

printer to evaluate their game design. Group B was asked to  imagine being a member of a 

residential  community and being  responsible  for weekly grocery  shopping which  included 

buying washing powder (see appendix for the exact wordings of both task descriptions). To 

incentivize the decisions and  increase external validity, participants had the chance to gain 

one additional Euro performance­based participation compensation  if  their product choice 

matched  a previously determined  team decision.  This  team decision was negotiated by  a 

group of five individuals in advance of the experimental sessions.  

In  the  virtual  environment,  participants  first  saw  a  blackboard  containing  the  require­

ments specified by their imaginary peers. We designed these requirements so that the diffi­

culty  level matched among  the groups  (see  supplemental  Table 9). To  this end, we  chose 

three easy and three hard decision criteria. We considered attributes as easy that were ob­

vious by looking at the product packaging or the product description from a distance. On the 

other hand, we considered attributes as hard  for which participants either had  to  interact 

with the product (e.g., by starting or turning it) or needed further information to be able to 

judge  the product. An  example of  a  required  interaction  is  that  the print quality of a  3D 

printer  could only be determined by pressing  the print button and  looking at  the printed 

object.  An  example  of  a  criterion which  needed more  information  is whether  a washing 

powder is environmentally friendly. This is because the roommates could have been looking 
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for  environmentally  friendly  packaging,  environmentally  friendly  product  ingredients,  or 

both. We  believe  that  external  help  could  be  strongly  appreciated  to  clarify  the  require­

ments for both groups. 

To begin the decision phase after memorizing the requirements, participants had to press 

a start button that concealed the requirements on the blackboard and displayed the prod­

ucts on a table behind them (refer to Figure 9 for Group A and Figure 10 for Group B). After 

this, participants could approach and engage with the products. To make their decision, par­

ticipants of Group A had to choose the respective 3D printer name from a drop­down menu 

and click a purchase button while participants of Group B had  to put  the desired washing 

powder into a shopping cart next to the product table. After making a choice and detaching 

the HMD, participants continued to answer questions about their product knowledge, prod­

uct  involvement,  task difficulty, and  the preferred  type of help  for algorithmic user  assis­

tance (from a  list of five common algorithmic user assistance types as shown  in the appen­

dix). 

Figure 9. 3D printer decision VR environment. 
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Figure 10. Washing powder decision VR environment. 

3.3.5.4 Video­Analysis­Stage 

During  this  stage,  participants  answered  time­related  questions  about  their  decision 

phase. Two questions regarding the desired timing for user assistance  in the form of (X) an 

algorithmic UAS and (Y) a digital human agent (for exact wordings, see supplemental online 

material). These questions were displayed sequentially, and their order was randomized to 

avoid possible confounds induced by any static order. To find the corresponding timestamps, 

participants watched a video  that showed their  first­person view during the previous deci­

sion­stage and also displayed a gaze dot  indicating  their visual attention. Participants  then 

selected the most appropriate moment for the assistance to appear and entered the corre­

sponding timestamp in the questionnaire. 

3.3.5.5 Post­Stage 

We asked participants  to go  to  the  restroom and detach  the ECG  transmitter and elec­

trodes. Then we continued with a debriefing (explanations about the experiment’s purpose) 

and answered questions. Finally, we issued the participants’ compensation and wished them 

farewell. 



    49 

 

3.4 Results 

The  data  analysis was  performed  in  python  3.7  using  neurokit2  0.2.3  (Makowski  et  al. 

2021),  scipy 1.7.3  (Virtanen  et  al. 2020),  statsmodels  0.13.2  (Seabold and Perktold 2010), 

and pingouin 0.5.3  (Vallat 2018). ML was performed  in python 3.10 using scikit­learn 1.0.2 

(Pedregosa et al. 2011) and XGBoost 1.7.1 (Chen and Guestrin 2016). 

3.4.1 Sample and Demographics 

A total of 62 participants were observed resulting in 50 complete samples with 24 individ­

uals  in Group A  (3D printers) and 26  individuals  in Group B  (washing powders). Regarding 

occupation, 49 of these 50 participants were students and one was a university staff mem­

ber. Among the 12 discarded observations, one had to be excluded because of a recording 

interruption of the eye tracker during the decision phase. Another observation was excluded 

because the eye tracker was not able to calibrate, most  likely due to a facial asymmetry of 

the participant. The  remaining  ten discarded observations had  to be excluded due  to ECG 

recording  issues,  particularly  because  of  Bluetooth  connection  issues  between  the  ECG 

transmitter and the host computer. The mean age of the remaining 50 participants  (29 fe­

male  and  21 male) was  24.5  years  (SD  =  4.9).  Their  average  participation  compensation 

amounted to 13.5 Euros (SD = 0.8). 

3.4.2 Correlation of Neuro­physiological Features 

We investigated correlations of ET and ECG metrics across different time windows for the 

different experimental periods. As expected, there were no significant correlations between 

the two sensors. The visualizations for the fixation duration over the different time windows 

are  shown  in  the  supplemental on  top.  Shorter  intervals naturally  show  correlations with 

longer ones  that comprise  them. For example,  the  time windows  from second 0  to 3 and 

from 3 to 6 overlap largely with the window from 0 to 5. This results in the red lines of high 

correlation  in  the  fixation duration plot. While ET  features were calculated  for  the  interval 

lengths (3, 5, 7, 10, 15, 30), the ECG features only comprised the 30­second interval because 

shorter time windows would have been  impractical  for most HRV­based features. The bot­

tom part of Figure 13 shows the correlations between the HRV features for this interval. 
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3.4.3 Attitude Towards Salespersons 

To  rule out possible confounds  that could arise  from different general attitudes  toward 

salespersons, we asked the participants several questions before  the actual purchase deci­

sion.  The  internal  consistency  of  the  general  salesperson  attitude  scale  was  acceptable 

(Tavakol and Dennick 2011), measured by Cronbach’s Alpha of α = .76 and the mean rating 

was 4 (SD = 1) where a high rating corresponds with a high desire to interact with salesper­

sons in general. A Shapiro­Wilk test indicated that the distribution of the mean rating did not 

depart significantly from normality (W = 0.98, p = .73), a Bartlett test indicated homoscedas­

ticity  (T  =  0.17,  p  =  .68),  and  a  two­sample  independent  t­test  did  not  indicate  different 

means between  the groups  (t = 0.7, p =  .49). Correlations with personality  traits were de­

termined via  the BFI­10 scale  (Rammstedt et al. 2013).  It  is plausible  that agreeableness  is 

significantly positively correlated (r = 0.33, p = .02) with a high desire to interact with sales­

persons. 

3.4.4 Purchase Duration 

The mean purchase duration (from pressing the start button to confirming the purchase) 

was 247.2 (SD = 117.1) seconds in total, and a normal distribution could not be assumed (W 

= 0.94, p =  .02). The mean purchase  time categorized by groups was 191.3  seconds  (SD = 

85.1) in Group A (3D printer) and 298.7 seconds (SD = 120.2) in Group B (washing powder). A 

Mann­Whitney U test  indicated a significant difference between the groups (U = 142.5, p < 

.01). We see a reason for this difference in the fact that many participants interacted directly 

with  the washing powder packages and  regarded  the product packages  from all sides. For 

the printer decision, participants pressed the print button but rarely interacted with printed 

objects because they could visually judge the print quality without touching the objects. 

3.4.5 RQ1: Desired Help Timing 

We asked participants about (i) the desired help timing for an algorithmic UAS and (ii) the 

desired help timing for a digital human agent. As shown in Figure 11, an early appearance of 

the algorithmic UAS was particularly  relevant  for  the  fast­moving consumer good  (FMCG). 

Reported mean values amounted to 125.5 seconds (SD = 113.2) for both help types (i and ii) 

combined, 103.1 seconds (SD = 107.1) for (i), and 148 seconds (SD = 115.8) for (ii). All values 

related to the duration after activating the start button which the participants pressed after 
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memorizing the decision requirements on the blackboard. The mean difference  (i)  ­  (ii)  for 

desired help timing between the two help providers (desired UAS timing ­ desired agent tim­

ing), was ­44.9 seconds (SD = 123.3) for both groups, ­12.3 seconds (SD = 81.4) for Group A 

and  ­75  seconds  (SD = 147.4)  for Group B. Multiple Wilcoxon  signed  rank  tests  (Wilcoxon 

1992) for paired samples indicated that the difference (i) ­ (ii) for both product categories (W 

= 245, p =  .02) and the difference  (i)  ­  (ii) for Group B  (W = 39.5, p =  .02) were significant, 

while the difference (i)  ­ (ii) for Group A was not significant. Participants wanted help from 

an algorithmic UAS earlier  than  from a digital human agent, but this was mainly driven by 

the responses  in Group B (washing powder). Overall, the differences  in desired help timing 

showed the importance of investigating different product categories. 

 

Figure 11. Desired help timing for algorithmic UAS and digital human consultant stratified 

by groups. 

Regarding  the most  popular  choices  for  algorithmic  user  assistance,  10  participants  in 

Group A wished for reviews from other consumers and 14 participants in Group B wished for 

a  product  comparison matrix. Hiding  irrelevant  products  and product  feature  highlighting 

were  the  least appreciated help  types  in both groups.  Supplemental  Figure 14  shows  the 

complete distribution of the desired help types for an algorithmic user assistance. 

3.4.6 RQ2: Influence of Knowledge on Help Timing 

Internal consistency of the measured product knowledge items amounted to α  =  .76, 

which can be  seen as acceptable  (Tavakol and Dennick 2011). For  the aggregated product 

knowledge  measure,  a  normal  distribution  and  homoscedasticity  could  be  assumed.  It 
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amounted to 2.9  (SD = 1.4) for Group A, 4.2  (SD = 1.1) for Group B, and  it significantly dif­

fered between the groups (t = ­3.37, p < .01).  

As a further control variable, we measured the participants’ product involvement. For the 

respective  items, a Cronbach’s Alpha of α = .9 indicated a very good consistency. Normal 

distribution and homoscedasticity could be assumed. The mean product involvement of 2.9 

(SD = 1.4) for Group A and 4.2 (SD = 1.1) for Group B was not significantly different between 

the product categories (t = 0.25, p = .8). We expected such a similar product involvement for 

the different products, due to the equality in monetary incentivization for both groups. 

Three  linear  regression  (OLS)  analyses  provided  further  insight  into  whether  product 

knowledge influenced desired help timings for different help providers. First, we considered 

only product  knowledge and product  category  as  independent  variables and  the absolute 

desired help timings as dependent variables (two separate OLS models for algorithmic UAS 

and digital human agent). For both help types, product knowledge had no significant  linear 

association with desired help timings. Next, we investigated the same independent variables 

but used the difference between the desired help timings as dependent variable (algorithmic 

UAS help timing ­ digital human agent help timing). The respective OLS model showed that 

there was also no significant  linear association between product knowledge and the differ­

ence in desired help timings. Finally, as a robustness check, we included our control variables 

and compared all three OLS models (desired help timing for the algorithmic UAS, digital hu­

man agent, and the timing difference between the two providers, see Table 2). 

In  all  three  constellations,  there was no  significant  linear  relationship between product 

knowledge  and desired help  timing. However, we did  find a  significant  linear  relationship 

between participants’ openness and their desired help timing for an algorithmic UAS. More-

over, participants’ age and extraversion showed significant linear associations with the de-

sired help timing for a digital human agent. For the model that accounted for the timing dif­

ference between  the help providers,  the variables age, extraversion, and product  involve­

ment showed a significant linear association with the dependent variable.  

Overall, we found no support for an influence of product knowledge on desired help tim­

ing. Instead, the OLS models suggested that age, personality traits, and product involvement 

influence desired help timing. 

   



    53 

 

Table 3. OLS models of association between product knowledge and help timing. 

   Model 1:     Model 2:     Model 3: 

 
Algorithmic UAS  

timing   

Digital human  
agent timing    Timing difference  

                            Coef.  SE  p     Coef.  SE  p     Coef.  SE  p 

Knowledge  9.14  11.98  .45    10.79  11.6  .358    ­1.65  13.26  .902 

Involvement  5.47  9.61  .573    ­16.64  9.32  .082    22.10  10.65  .045* 

Sales Rep. Attitude  ­6.73  16.72  .689    ­7.71  16.2  .637    0.97  18.52  .958 

Agreeableness               11.03  7.76  .164    12.65  7.5  .101    ­1.63  8.60  .851 

Conscientiousness         9.79  8.76  .271    ­0.41  8.5  .962    10.20  9.71  0.3 

Extraversion                ­5.11  6.41  .43    14.82  6.2  .022*    ­19.93  7.10  .008** 

Openness                    ­22.12  8.78  .016*    ­3.27  8.5  .703    ­18.93  9.73  .059 

Neuroticism                 8.61  7.74  .273    ­3.61  7.5  .633    12.23  8.57  .162 

Age                         3.88  3.34  .252    11.55  3.2  .001**    ­7.66  3.70  .045* 

Gender (Male)  ­21.76  37.89  .569    ­56.68  36.7  .131    34.92  41.97  .411 

Group (B)  ­39.00  35.33  .277    32.98  34.3  .342    ­71.98  39.13  .074 

Intercept                   ­13.51  167.85  .936    ­199.01  162.7  .229    185.50  185.91  .325 

R­squared           .30     .44     .354 

Note. *p < .05, **p < .01 

3.4.7 RQ3: Cognitive Load Classification 

3.4.7.1 Task Difficulties 

We quantified the task difficulty of the generic CL tasks by counting the correct trials for 

each difficulty level (easy, medium, and hard). The correct completion rates were 146 out of 

150 (97.3%) for the easy task, 131 out of 150 (87.3%) for the medium task, and 45 out of 150 

(30%) for the hard task and a Kruskal­Wallis test  indicated a significant difference between 

the medians (H = 99.03, p <  .01). Using the NASA TLX questionnaire  (Hart 2006), we meas­

ured how demanding our participants perceived the CL tasks and the purchase decision. Re­

garding the overall task  load, a normal distribution could not be assumed for the easy task 

and the purchase decision (see supplemental Table 10). Therefore, we conducted a Kruskal­

Wallis  test  that  indicated  significant  differences  between  the  three multitasking  difficulty 

medians  (H = 65.14, p <  .001). Yet, due to the rather  low  internal consistency of the NASA 

TLX items (Cronbach’s α < .7, see supplemental Table 10), we considered only the single item 

concerning mental strain for  further analyses  (see supplemental Table 11). This single  item 

also differed significantly between the tasks (H = 83.73, p < .001), suggesting that the three 

CL tasks evoked the desired  low, medium, and high CL  levels. Next, we tested which of the 

three CL task difficulty  levels was most comparable to the purchase decision task. Pairwise 

Mann­Whitney U tests indicated significant differences for the tasks with easy and hard diffi­
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culty compared to the purchase decision, but this was not the case for the task with medium 

difficulty  (see  supplemental Table 12). The mean perceived  task difficulty of  the purchase 

decision was only  0.3  standard deviations  less  than  the perceived medium  task difficulty. 

Looking  additionally  at  the  box  plots  in  the  supplemental  Figure  15,  we  interpret  that, 

among  the available options,  the perceived difficulty of  the purchase decision can best be 

matched to the perceived difficulty of the medium task. As a robustness check, we  investi­

gated the differences in perceived mental difficulty regarding the purchase decision between 

the groups. While  the perceived mental difficulty  in Group B exhibited  less variance  com­

pared to Group A, we must assume equal mean difficulty between the groups, tested with a 

Mann­Whitney U test (U = 368, p = .27). 

3.4.7.2 Machine Learning Model 

To classify the CL tasks and desired help timings, we chose an 80% training and 20% test­

ing split method. Instead of selecting a dedicated validation set, we applied a four­fold strati­

fied cross­validation on the training set (Browne 2000). The optimization metric for classifi­

cation was accuracy, while  (multiclass) negative  log­likelihood  served as  the  loss  function. 

Supplemental Table 6 shows the complete hyper parameter space. We used a randomized 

search approach on the hyper parameters to perform a lightweight tuning, limited to a max­

imum of 100 iterations. To interpret the feature importance, we used SHAP values (Lundberg 

and Lee 2017). 

First, we solely  investigated the generic multitasking difficulty  levels. All participants per­

formed three easy trials, three medium trials, and three hard trials for a duration of 30 sec­

onds each. The best XGBoost model yielded a classification accuracy of .77 for the test set. 

This means that based on the ET and ECG measurements, we were able to predict with 77% 

accuracy whether a participant was performing  the easy, medium, or hard  task.  Figure 12 

shows the corresponding confusion matrix. 
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Figure 12. Confusion matrix for best multitasking classification model. 

The easy task was classified with a high accuracy of  .9 while the medium and hard tasks 

were not as clearly separable. Despite a correct classification rate of .77 for the medium and 

.63 for the hard CL  levels, these tasks were frequently mutually misclassified. Nonetheless, 

the classification rates for these two classes were still clearly better than random guesses. A 

possible explanation for the misclassification between the medium and the hard tasks is the 

fact that 70% of the participants were unable to successfully complete  the hard tasks. We 

observed that some participants only tracked two elements (the moving balls and appearing 

numbers) and ignored the additional spinning logo. Even though this strategy almost certain­

ly resulted  in an  incorrect answer and no performance­based compensation for the respec­

tive round. 

The mean absolute SHAP values, as shown  in the supplemental Figure 16, represent the 

20 most important features regarding the multitasking trials in the test set. Different saccade 

duration and angular speed related features were prominent (15 of the 20 most  important 

features). This means the required time to  jump between AOIs was most discriminative for 

the CL  tasks. Overall,  the most  important  feature was  the  saccadic mean duration  for  the 

whole 30­second periods. The number of uniquely fixated objects also played a role, as three 

features in this regard were among the 20 most important ones. Two blink­related features 

and one fixation­related feature were also present among them. Regarding the time window 

sizes,  five  features  related  to  (3,  7,  15)  second  time  spans,  three  features  related  to  30­
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second time spans, and two  features related to 5­second time spans.  In our case, ECG and 

pupillometry features can be considered less important in discriminating between CL difficul­

ty  levels as they were not present among the 20 most  important  features. The best pupil­

lometry feature was variance­related and ranked in 30th place. For ECG, the best feature was 

the HRV correlation dimension  (HRV CD)  for the whole trial duration  (Bolea et al. 2014), a 

nonlinear measure for correlations within the signal which ranked in 51st place. 

We applied the trained multitasking model to the purchase decisions and considered the 

intervals [t­30; t] prior to the indicated help timestamps t. Our intention was to identify the 

prevailing CL level shortly before help was requested. Choosing the same interval duration of 

30 seconds allowed us to create the features analogously to the generic CL tasks. We classi­

fied each of the time spans as having either a low, medium, or high CL level. To compare one 

help  interval with one  respective non­help  interval, we used  the  interval  [t­60;  t­30]  as  a 

non­help benchmark. For example,  if a participant desired help two minutes after pressing 

the start button, we considered the data for the interval from timestamp 01:00 to 01:30 as 

the non­help benchmark and the data for the interval from timestamp 01:30 to 02:00 as the 

desired help timing period. For the desired timing periods of the algorithmic UAS, the model 

classified high (78%) and medium (12%) CL levels (see Table 4 for absolute counts and  

Table 5  for classification probabilities).  In comparison, most of  the non­help benchmark 

intervals (96%) were classified as  low CL  level, and only 4% were classified as high CL  level. 

For the desired timing of the digital human agent, the model classified 88% of the observa­

tions as high and 12% as medium. However,  the benchmarks  for  these observations were 

also mostly classified as high (76%) and medium (18%) while only one observation (2%) was 

classified as low CL. This implies a difference in CL (an increase from low to high) during the 

60 seconds before the algorithmic UAS was desired but no change  in CL during the 60 sec­

onds before a digital human agent should appear. 
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Table 4. Classification results (match help timespans to CL levels). 

Help type  Low  Medium  High 

Algorithmic UAS  0  11  39 

Algorithmic UAS benchmark  48  0  2 

Digital human agent  0  6  44 

Digital human agent benchmark  1  11  38 

 

Table 5. Average classification probabilities (match help timespans to CL levels). 

Help type  Low 

P (SD) 

Medium 

P (SD) 

High 

P (SD) 

Algorithmic UAS  .05 (.08)  .31 (.17)  .65 (.2) 

Algorithmic UAS benchmark  .94 (.17)  .01 (.02)  .05 (.15) 

Digital human agent  .03 (.04)  .28 (.16)  0.69 (.18) 

Digital human agent benchmark  .05 (.1)  .31 (.18)  0.64 (.2) 

3.5 Discussion 

For our first research question, relevant insights emerged from the statistical analysis. We 

found that participants want help earlier from an algorithmic UAS than from a digital human 

agent. An early appearance of  the algorithmic UAS was particularly  relevant  for  the FMCG 

presented to Group B. The fact that a comparison matrix was the most desired algorithmic 

help type for the washing powders (see supplemental Figure 14) suggests that participants 

were primarily looking for ways to compare the product attributes efficiently. It is likely that 

they wanted to reduce extraneous CL  induced by the rather unfamiliar VR environment.  In 

contrast, when considering the 3D printer decisions, reviews from other consumers were the 

most desired  algorithmic help  type. Combined with  the  insignificant difference  in desired 

help timing between the algorithmic UAS and the digital human agent when stratifying for 

Group A, it suggests that these participants were likely seeking help to cope with intrinsic CL.  

Reviews were the second most desired help type. As a review by another consumer and 

an expressed opinion by a digital human agent are comparable, we claim that offering a digi­

tal human agent as help provider is more important for the technology product compared to 
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the FMCG. This is further supported by the fact that 3D printers were the product for which 

our participants reported the  least amount of product knowledge. For both groups, partici­

pants exhibited a certain reluctance to call for the digital human agent early in the process. A 

good  idea could be  to provide a digital human agent as optional help,  in addition  to algo­

rithmic help  types which are offered  in  the  first place. Also, when  considering non­binary 

choices for a certain help offering, our findings clearly highlight the need to customize timing 

and type of assistance offerings contingent on different scenarios and product categories.  

Regarding the second research question, the experiment confirms significant differences 

in average product knowledge between the technical product and the FMCG. However, we 

did  not  find  significant  linear  relationships  between  product  knowledge  and desired  help 

timing for either of the two help providers  (and not  for the difference  in desired help tim­

ing). When  controlling  for  demographics,  personality  traits  and  product  involvement,  the 

respective OLS models indicate that participants’ age, extraversion, openness, and product 

involvement have significant linear associations with desired help timings. The participants’ 

age shows a strong positive  linear association with the desired help timing for a digital hu­

man agent (p = .001, as shown in Table 3). The positive coefficient indicates that older partic­

ipants wish to receive help from a digital human agent comparatively late (11.6 seconds per 

year). With  increasing age,  the difference  (desired algorithmic UAS  timing  ­ desired digital 

human agent timing) between the desired help timing also decreases, but this effect  is not 

as strong. Note that the product involvement is not significantly different between the prod­

uct categories (likely due to the equal monetary incentivization) but displays a positive linear 

association with  the difference between desired  timings  for  the  two help providers. More 

specifically, a one­unit  increase on  the 7­point Likert  scale  for product  involvement corre­

sponds to a 22.1­second increase in difference. Considering the product involvement coeffi­

cient for the timing of the digital human agent (β = ­16.64, p =  .08), we speculate  that as 

product involvement increases, a digital human agent should appear earlier. To summarize, 

our OLS models suggest that product knowledge has a subordinate role with respect to de­

sired help timings. Instead, demographic aspects and personality traits are likely to be more 

relevant.  Product  involvement  could  also play  an  important  role, particularly  in  scenarios 

where the variance of product involvement is larger than in ours. In our experiment, we kept 

the variance in product involvement low by offering the same type of monetary incentive to 

solve both the 3D printer and the washing powder task. 
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The analysis of the ML classifications allows us to answer the third research question. Our 

results suggest that the 30­second periods before the desired help timings can be mapped 

with good accuracy to previously determined CL levels, even though the generic tasks were 

quite different compared to the purchase decisions. This is a promising result, as it suggests 

that  further ML paradigms  can potentially be  trained with generic CL  tasks  that are quite 

different  from  the  actual  product  decision.  Regarding  the  input­features  for  the  XGBoost 

model, saccade­based metrics were most relevant. Both saccadic angular velocity and sac­

cade duration were highly discriminative. ECG measures were not among  the 20 most  im­

portant features, which suggests the superiority of the ET sensor over ECG for CL measure­

ment, at  least  in our  relatively brief  scenario. As a  supplemental data  source, ECG can be 

useful to objectively measure CL, especially over an extended period. 

For the 30­second intervals prior to the desired algorithmic UAS help timing, the ML mod­

el predicted medium and high CL levels but none of the observations were classified as low 

CL levels. In comparison, the model classified our benchmark interval (60 to 30 seconds prior 

to the desired help timing) mostly as low CL level. When considering the average class prob­

abilities and their relatively low variances (see  

Table 5), the benchmark and help intervals exhibit good separability. Overall, an adaptive 

intervention of an algorithmic UAS, which monitors changes in CL and automatically starts an 

interaction, seems possible. 

Help timings for a digital human agent were also associated with a medium or high CL lev­

el. However, we did not  find a  significant  change  in CL  levels  compared  to  the  respective 

baselines. The CL  level  is already medium or high during the baseline  interval and does not 

change when help  from a digital human agent  is desired. Based on our  findings, we argue 

that the CL level (at this likely later point in the decision­making process) should not be used 

as the sole indicator to inform a digital human agent about good intervention timing. 

3.6 Conclusion 

This  study extends  the consumer behavior  literature  in  the emerging  subfield of virtual 

commerce. Our  statistical  analysis  investigates  the  desired  help  timings  for  two  different 

product categories  in detail and outlines  the need  for differentiated  treatment.  It also  re­

veals behavioral  and demographic  factors which  are  linearly associated with desired help 
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timing. Our study also provides  information about the most desired algorithmic help types 

for different product categories. 

Furthermore, we show how ET and ECG data can provide the features for a CL­based ML 

model which may benefit the consumer journey. The presented model indicates a good help 

timing for an algorithmic UAS while shopping for products or services in a v­commerce con­

text. Even  though,  the ECG measures proved  to be  supplemental, our  study  still applies a 

larger  number  of  ET  features  compared  to  previous  studies.  For  instance,  Peukert  et  al. 

(2020) used only one ET feature to detect decision phases and Pfeiffer et al. (2020)  limited 

the number of predictors to four variables at a time. 

In the v­commerce context, recognizing and reducing CL is applicable in many ways. Visual 

and other  sensory aids can help  to  reduce CL and make  it easier  for consumers  to under­

stand information. Moreover, by personalizing a virtual environment, UAS can reduce CL and 

make  it easier for consumers to perform their decision­making processes. CLT can provides 

twelve principles to break down complex  information  into smaller, more manageable parts 

and present it in a clear and concise manner. Our experiment suggests that an ML model can 

serve as  indicator  to  invoke an algorithmic UAS which appears  just­in­time and  selectively 

provides the most relevant  information to consumers. However, we believe that CL should 

not be used as the only criterion which determines the current consumer help seeking sta­

tus. Instead, it should be included in multidimensional models to narrow down individualized 

help time spans for specific environments, products, and situations. 

3.6.1 Theoretical Implications 

With the proliferation of v­commerce, the emphasis in sales shifts towards providing con­

sumers with a dynamic and interactive shopping experience. This increased attention to cus­

tomer experience is driving providers to invest in innovative technology, such as AR and VR 

hardware, and  the software  to support  it. The current  rise of AI  is  likely  to accelerate  this 

trend even further, changing the rules for all kinds of retail activities. Our research gives an­

swers to the question by Branca et al. (2023), who ask “What do we know and what do we 

not know about consumers’ product evaluations in VR?”. We complement previous research 

(i)  by  showing differences  in  desired help  timings  for  different  product  categories,  (ii)  by 

identifying  relevant  impact  factors on help  timing, and  (iii) by applying an extended set of 

sensors and  features  in an ML approach based on CLT. Our  results  show  the  feasibility of 
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inferring CL from ET and ECG data, which then serves as a proxy for algorithmic UAS  inter­

vention. However, using CL as single predictor was not sufficient to determine a good point 

in time for a digital human agent. 

Regarding  the help  type  for an algorithmic UAS, our participants  requested  reviews and 

opinions of other customers most frequently. However, given the fake review problem  (He 

et al. 2022) that currently prevails on several big e­commerce platforms, and combined with 

the rise of LLMs, we doubt that written messages or recorded videos will remain as compel­

ling for consumers as they are today. On the second place were side­by­side product com­

parisons, which outline relevant and detailed information about products in tabular format. 

Taking CLT and Cognitive Fit Theory (Vessey 1991) into consideration, such a direct compari­

son might be  feasible  for a  set of up  to  four products, which we deem a good maximum 

comparison capacity. Still, an optimal set size should be the object of further investigations. 

  The  open  research  questions,  such  as  good  intervention  timing  for  digital  human 

agents, require combined efforts, methods, and theories from fields such as economics, neu­

roscience,  and  psychology. As  sensors  like  EEG  and  functional  near­infrared  spectroscopy 

(fNIRS) become more precise while  steadily  shrinking  in  size and price, collaborative work 

can help to understand behavioral phenomena  in the new context of  immersive virtual do­

mains. Applying new combinations of input features and incorporating further psychological 

effects  such as  flow  (Berger et al. 2023) may also help  to explain and model desired help 

timing and eventually allow for a better understanding of consumers. 

3.6.2 Managerial Implications 

We  urge  practitioners  to  embrace  the  challenges  and  opportunities which  new  virtual 

sales  channels  offer,  sometimes  even  impose.  Tech  giants  are  racing  for  the  next  break­

through device after the smartphone and consumers are wearing an  increasing number of 

sensors that  integrate  into HMDs and additional wearables, such as wristwatches and ear­

phones. Future shopping assistance will likely  involve neurophysiological sensor data, apply 

ML, and be intelligent. Still, we believe that the human in the loop remains a crucial factor, 

for instance, as a digital human agent. Although delivered through an avatar, a genuine and 

actionable recommendation from a real person can still hold more trustworthiness than an 

automated  suggestion  from  a  recommender  system  (Castelo  et  al.  2019),  particularly  for 

contexts where the user wants to that to be seen by others, and to see themselves, as fully 
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human (Heßler et al. 2022). However, LLMs are improving and a specialized model (in com­

bination with  further AI techniques) may soon allow  for an  intelligent, objective, and  thus 

trustworthy AI sales agent that is perceived as very human­like (Seeger et al. 2021). Revolu­

tionizing  real­world  call  centers  and  drop­in  stores,  v­commerce  industry  pioneers  should 

evaluate how a combination of basic UAS, LMM­based AI agents, and digital human agents 

may provide most value to the consumer experience. 

With respect to ML, our described feature engineering process with different sensors and 

window sizes may  inform how to create an appropriate  inference pipeline  for help  timing. 

Our study provides a guideline on how to design a CL­based model that  infers desired help 

timing for v­commerce customers. For practitioners with the capability to collect much larg­

er  samples  than we had, we  recommend evaluating  time­series­based models.  In our  ap­

proach, we used a small dataset but with more data available, deep  time series classifiers 

like InceptionTime (Ismail Fawaz et al. 2020) or TapNet (Zhang et al. 2020) might be suitable 

models to determine help­timing for a digital human agent. Providers could further combine 

it with an LLM­based AI agent, who has  in­depth product knowledge. Overall, such a  fine­

tuned ML  pipeline  is  likely  to  enhance  customer  experience,  increase  consumer  engage­

ment, and ultimately improve the likelihood of making a sale. 

ET has proven to be an accurate sensor that provides both attentional and cognitive met­

rics.  In contrast, we note  that the ECG features only had a supplemental character  for our 

study. In a brief period of 30 seconds, the heart rate  is not as  informative as the change  in 

pupil dilation or the gaze duration  for a certain product. While highlighting the key role of 

ET, we  speculate  about  the  impact of  face  tracking  (FT)  in our help  timing prediction en­

deavors. Realistic synchronization of  the cheeks, eyelids, and  lips may help to  improve the 

interaction between conversation partners. The next generation of wireless HMDs will inte­

grate ET and FT because good animations and mapping of avatar movements is key in future 

virtual interactions, not only sales. Thus, incorporating FT seems like a logical next step. 

V­commerce providers should consider ethical and privacy­related aspects, as the use of 

neurophysiological sensors raises many questions. To prevent privacy issues, inference could 

be done on  the edge device  itself, but  this would be power­consuming and  limited by the 

embedded processing unit. The European Union enforces special regulatory measures with 

the AI Act which could limit online data transfer for inference to a certain degree.  However, 
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these  regulations are not yet established  in detail and  taking  influence by means of  close 

cooperation with the regulators seems advisable. 

Overall, our paper suggests that a virtual showroom is a feasible virtual shopping platform 

for both FMCG and technical products. Still, we believe that it is not enough to copy prevail­

ing real­world patterns and paradigms into virtual environments. For instance, as space is no 

constraint in VR, we see a classic shelf arrangement with very low and high product positions 

as obsolete. Practitioners should put increased effort into identifying and adhering to these 

new  v­commerce  rules,  such  as  the  need  for  adjusted  ergonomic  considerations  (Wilson 

1997). Our showroom gives one idea of how a v­commerce sales platform might look, but it 

is still very close  to what  is possible  in  the  real world. Engaging VR room designs could go 

beyond physical  limitations and  incorporate  interesting architectural  features. These envi­

ronments could  further  incorporate fun games  (Tayal et al. 2022) and social activities  (Gal­

lace  and Girondini 2022), which might act  as  ice­breaker between  the  consumer and  the 

vendor. 

Finally, we advocate for iterative processes when transitioning to virtual sales and help of­

ferings. Our study also describes one part of an iterative research process. Further iterations 

will  introduce the much­spoken­of avatar, and we also plan to evaluate a product compari­

son matrix UAS for commodity products. 

3.6.3 Limitations and Future Research 

The limitations of this study can also provide directions and advice for future research. A 

first concern is the generalizability of the results as the sample mainly consisted of students. 

Future research should  involve a broader cross­section of society  including different educa­

tion levels, occupations, and age groups.  

Second, future studies should increase the sample size because we were rarely able to as­

sume a normal distribution for statistical testing. For future experiments, it would also make 

sense to include further product categories (e.g., beverages, food, interior) to obtain a better 

understanding of product­specific needs. Our  results  regarding  the desired help  type  also 

suggest taking a closer investigation of comparison matrices as algorithmic user assistance. A 

convenient  algorithmic UAS  for product detail  comparison was  particularly  desired  in  the 

FMCG group.  
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Third, immersion, perceived telepresence, and perceived product involvement could have 

been increased by adding more sensory channels (particularly audio) to the virtual environ­

ment. Future  research  could mitigate  these  aspects,  e.g.,  by  adding  sound  effects  to  the 

products. The room size also had a limiting impact on immersion and telepresence. On sev­

eral occasions the experimenter had to interrupt participants and ask them to remain within 

the defined VR space. Subsequently, they were not able to fully immerse themselves in the 

virtual space. Future studies with a similar showroom setup should ensure to have at  least 

25 square meters of dedicated VR space.  

Fourth, the quantitative approach with questionnaires leads to methodical issues like cen­

trality tendencies  and  questionable  consistency,  especially  for  the  NASA­TLX  items  (Hart 

2006). Future studies could mitigate this issue by applying a mixed methods approach and by 

implementing and validating a more consistent mental difficulty scale.  

Fifth, our CL­based ML model predicted help timing  for an algorithmic UAS well but not 

for a digital human agent. However, we believe that it is feasible to create a predictive mod­

el for both help providers. There seem to be other influencing factors for the right interven­

tion timing of digital human agents that our ET and ECG features do not cover. Furthermore, 

other model families, such as Hidden Markov Models (Rabiner 1989) or a deep learning time 

series classifier might be able to mitigate the issue and predict timings for both help provid­

ers. For a review on different time series classifiers, we refer to Ruiz et al. (2021). 

Sixth, future experiments could  improve the generic CL tasks or  introduce another CL  in­

ducing design,  such as a n­back  task variant  (Jaeggi et al. 2010). We performed  the  single 

generic CL  task  trials  sequentially  from easy  to hard with  individually chosen  rest periods. 

Future research could consider a randomized setup with fixed rest periods (which might re­

sult in better classification results but bears a risk of reporting confounds regarding the task 

order). A broader range of CL tasks could also be considered, for instance tasks with auditory 

or haptic components or a classic n­back task setup. Furthermore, the period of 30 seconds 

for  the  CL  tasks  is  too  short  for  ECG measurements  and  should be  revised  for  future  re­

search. It is also advisable to consider further sensors for CL, such as measuring galvanic skin 

response  (GSR)  and  electroencephalographic  (EEG)  activity, which might  be  available  for 

future VR devices off­the­shelf. 

Future studies may provide deeper  insights,  for the good of both customers and service 

providers. New generations of highly  immersive VR hardware allow  for  integrated and ap­
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pealing  experiments. We  see  the  use  of  neurophysiological  sensors  in  VR  as  a  valuable 

methodology in experimental consumer behavior research and advocate for further explora­

tion. It remains future work to find indicators for precise help demand prediction regarding a 

digital human agent. Different age groups and personality traits (like extraversion) may serve 

as further predictors, as our data has indicated. Incorporating additional neurophysiological 

aspects, such as emotions (Martinez­Navarro et al. 2019) and stress (Riedl 2012; Ishaque et 

al. 2020), is another step to increase the accuracy and generalizability of the ML model. Fu­

ture research should particularly focus on the prediction of the moment when a digital hu­

man (or AI) agent should appear. Most probably, this point in time is more heterogeneously 

distributed among participants compared to the algorithmic UAS timing. 
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3.7 Supplemental Material 

3.7.1 Cover Story 3D printer 

You and a team of fellow students develop a board game  idea. The team decides to put 

the idea into practice and builds a prototype. In a collaborative effort, you design the game 

pieces in a 3D software. Now you want to evaluate these models. 

For the production, your team decides to purchase a 3D printer. However, an abundance 

of different printer variants exists. A company called 3D Print Workshop Inc. offers you the 

opportunity  to  evaluate  their  3D  printers  in  a  virtual  environment. Now,  you  put  on  VR 

glasses and enter the showroom of 3D Print Workshop Inc. In the virtual environment, you 

will  see decision  criteria which  your  team  considers  important.  Furthermore,  you will  see 

several 3D printers with their properties. 

Your task is to choose the right product. 

3.7.2 Cover Story Washing Powder 

You share your apartment with several roommates. It is your turn to do the grocery shop­

ping and realize that the washing powder  is empty. Therefore, you ask all your roommates 

to note down what kind of washing powder they prefer. Of course, you are not going to the 

supermarket in real world. Instead, you use your VR headset and order the product in Virtual 

Reality. In the virtual environment, you will see decision criteria which your roommates con­

sider important. 

Your task is to choose the right product. 

3.7.3 Choices for Desired Help Types 

Product comparison matrix 

Product recommendations 

Reviews of other consumers 

Product feature highlighting 

Hiding irrelevant products 
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3.7.4 Help Timing Questions 

The experimenter will  show you a video of your purchase decision. While watching  the 

video, please determine when you would have appreciated help during  the  task  (  (X) by a 

digital human  consultant  in  the VR environment  /  (Y)  (by an algorithm  in  the VR environ­

ment) ). After watching the video, please answer the questions below. 

(X) What time would be the best moment  for an algorithmic decision support to 

appear?  

(Y) What  time would be  the best moment  for a digital human consultant  to ap­

pear? 

3.7.5 Product Knowledge Items 

1) Compared to others, how familiar do you think you are with the product? 

2) Do you know precisely what attributes of the product decide the  function of the 

product? 

3) Do you think you can make a satisfactory purchase of the product based on only 

your own knowledge, without another person's help? 

7­point Likert Scale: 1 – absolutely not; 7 – absolutely yes 
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3.7.6 Supplemental Figures 

 

Figure 13. Correlation analysis for ET and ECG features. 
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Figure 14. Desired algorithmic UAS help type stratified by groups. 

 

Figure 15. Boxplot showing the mental strain among the different tasks. 
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Figure 16. Mean absolute SHAP values explaining the multitasking classification model for 

the test set. 

3.7.7 Supplemental Tables 

Table 6. Hyper parameter space for the XGBoost model. 

Parameter  Values 

colsample_bytree  [0.6, 0.7, 0.8, 0.9] 

gamma  [0, 0.1, 0.2, 0.3, 0.4] 

learning_rate  [0.0005, 0.001, 0.005, 0.01, 0.05, .1, 0.5] 

max_depth  [3, 5, 7, 9, 11, 13, 15, 17, 19] 

min_child_weight  [1, 3, 4, 7, 9] 

n_estimators  [25, 50, 75, 100, 125, 150, 175, 200] 

reg_alpha  [0, 0.001, 0.005, 0.01, 0.05] 

subsample  [0.6, 0.7, 0.8, 0.9] 
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Table 7. Eye tracking feature overview. 

Feature*  Comment 

Blink count   

Blink duration   Max, Mean, Var 

Fixation count   

Fixation duration  

Saccade count 

Saccade duration 

Saccadic angular speed 

Max, Mean, Var 

 

Max, Mean, Var 

Min, Max, Mean, Var 

Dominant pupil iris ratio  Min, Max, Mean, Var 

Unique object count   

* ET features were calculated for the different time windows 3, 5, 7, 10, 15, and 30 sec. 

Table 8. ECG feature overview. 

Feature*  Comment 

Time domain   

NN  Min, Max, Mean, Median, MAD 

SDNN,  SDSD,  RMSSD,  Prc20NN,  Prc80NN, 

pNN20, pNN50, HTI, TTIN 

 

Frequency domain 

HF, VHF, LnHF, HFn, LFn 

 

Time­frequency domain 

STFT, WT, WVD, SWVD 

 

Nonlinear domain 

SD1,  SD2,  SD1/SD2,  S,  C,  C1,  C2,  CSI,  CVI, 

CSI_Modified,  PIP,  CD,  HFD,  KFD,  LZC,  CVNN, 

CVSD, MCVNN, IQRNN, IALS, PSS, PAS, GI, SI, AI, 

PI, DFA_alpha1, ApEn, ShanEn, FuzzyEn 

 

MFDFA_alpha1  Width,  Peak,  Mean,  Max,  Delta,  Asym­

metry, Fluctuation, Increment 

* ECG features were only calculated for the full 30 second time windows. 
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Table 9. Product criteria classification. 

Category  (A) 3D printer  (B) Washing powder 

Rather easy  ­ Easy device setup 

­ Large model print size 

­ PETG material printable 

 

­ Allows for 100 washing cycles 

­ Conserve colors 

­ Efficient dirt removal 

Rather hard  ­ Fast print speed 

­ High print quality 

­  The device  should not  catch 

fire 

­ Environmentally friendly 

­ Allow high washing temperature 

­ Little powder amount per wash cy­

cle 

 

Table 10. Overall task difficulty and test results for normality and for consistency among 

NASA TLX items. 

Task  Mean  SD  Shapiro­Wilk W  Shapiro­Wilk p  Cronbach’s α   

Easy  2.89  0.727  .897  <.01**  .629   

Medium  3.60  0.767  .974  .345  .574   

Hard  4.57  0.910  .967  .169  .582   

Decision  2.98  0.972  .946  .024*  .699   

Note. *p < .05, **p < .01 
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Table 11. Mental task difficulty descriptive analysis and test results for normality. 

Task  Mean  SD  Shapiro­Wilk W  Shapiro­Wilk p 

Easy  2.14  1.385  .740  <.01** 

Medium  3.46  1.343  .913  <.01** 

Hard  5.74  1.226  .849  <.01** 

Decision  3.86  1.539  .939  .012* 

Note. *p < .05, **p < .01 

 

Table 12. Pairwise task comparison for differences in mental difficulty. 

Task 1  Task 2  Mann­W. U  Mann­Whitney  p 

(Bonf. corrected) 

SD 

Hard  Medium  2201.5  <.01**  1.773 

Hard  Easy  2364.5  <.01**  2.752 

Hard  Decision  2073  <.01**  1.351 

Medium  Easy  1976  <.01**  0.967 

Medium  Decision  1032.5  .76  ­0.277 

Easy  Decision  483.5  <.01**  ­1.175 

Note. *p < .05, **p < .01 
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4 Paper C: Customer Decision­Making Processes Revisited: Insights 

from  an  Eye  Tracking  and  ECG  Study  using  a  Hidden  Markov 

Model 

Tobias Weiß, Lukas Merkl, and Jella Pfeiffer 

Abstract  

Good timing  is key for many activities  in business and society. In the context of adaptive 

user assistance, it can work as door opener to further engage with the user. This paper pre­

sents a virtual commerce study which combines eye tracking, electrocardiography, and vir­

tual reality with the goal to detect decision phases  in two different purchase scenarios. We 

therefore collect objective sensor data in combination with subjective decision phase anno­

tations. Shifts between decision phases are determined subjectively by the participants via 

retrospective video analysis. For decision phase recognition, we demonstrate how to use the 

neurophysiological  sensor  data  to  train  a Hidden Markov Model with multivariate mixed 

Gaussian emission distributions and how to use  it  for  inference. A main benefit of our ap­

proach is its lightweight character regarding both training and inference. 

Keywords: Customer Behavior, Decision­making, Eye Tracking, Electrocardiography, 

Hidden Markov Model, Gaussian Mixture Model, Machine Learning, Virtual Commerce, 

Virtual Reality. 

4.1 Introduction 

Approaching customers at the right time  is crucial because  it can significantly  impact the 

interaction success (Sykes 2015). Specifically, good timing can help to maximize engagement, 

build trust, and  increase conversion rates  (Friemel et al. 2018). However, to determine the 

right point  in  time  to approach a customer  requires profound understanding of  the  target 

audience's behavior and preferences (Horvitz et al. 2013). Advances in conversational agents 

and user assistance systems  (UAS) often focus on the right  information,  introduce  context­

awareness and  improve  interactivity  (Maedche et al. 2016; Pfeiffer 2011; Sykes 2015). Ra­

ther scarcely, previous research has investigated invocation timing based on neurophysiolog­

ical  indicators  (Peukert et al. 2020). Within the ongoing  transformation of the  retail sector 

towards virtual  commerce  (Bourlakis et al. 2009) and  the  rise of  the metaverse  idea  (Ball 
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2022), good invocation timing is one of the key components for a variety of information sys­

tem  (IS) artifacts. Decades ago, metaverse and virtual  reality  (VR) advocates already envi­

sioned that a  large fraction of daily life and therewith a  large fraction of shopping activities 

transfers  to virtual spaces  (Lanier and Biocca 1992; Stephenson 2003). Today,  this process 

gains momentum, as big tech companies introduce new hardware and applications with rig­

orous  commitment.  Latest VR headsets  ship with eye  and  face  tracking  technology which 

fosters the potential and feasibility of neurophysiological IS and therefore turns them into a 

game changer. With a VR headset on their head, future customers wear a variety of sensors 

in proximity to the most reliable information source about their attitudes and moods. In this 

paper, we present our approach to integrate neuroscientific methods into virtual commerce 

IS. Our research question states as follows: 

 

RQ: Can we determine a good timing to approach customers  in a virtual commerce sce­

nario using eye tracking and electrocardiography? 

 

We report our insights gained from a study in which 50 participants had to make purchase 

decisions for either washing powder or 3D printers while wearing a head­mounted VR head­

set. We collected participants’ eye tracking (ET) data, electrocardiography (ECG) data, and 

created a prediction model that can distinguish between different decision phases. Our  in­

sight can be used to inform a UAS or digital human agent when help is wanted. As model for 

decision phase recognition, we chose a combination of multivariate Gaussian Mixed Model 

and  Hidden Markov Model  (GMM­HMM).  The  benefit  of  our  approach  is  its  lightweight 

character  in both training and  inference. Thus,  the presented GMM­HMM approach offers 

itself as good candidate  to make  it  into soon­to­be  released virtual commerce  (and other) 

neurophysiological  sensor­based  IS  artifacts  (vom  Brocke  et  al.  2013).  To  the  best  of  our 

knowledge, no study exists which applies machine  learning approaches to differentiate be­

tween different decision phases using neurophysiological  sensor data. Our  research builds 

up on previous models but  tries  to apply a more generic  inference method not  solely de­

pendent on product comparisons and re­dwells. 
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4.2 Method 

4.2.1 Consumer Decision­Making 

Several scholars  in consumer behavior research suggested models to subdivide customer 

decision­making processes into different phases. Most studies support a phase theory which 

consists at  least of an orientation and an evaluation phase. One prominent phase model  is 

the five­stage Engel Kollat Blackwell (EKB) model (Engel et al. 1968), as shown  in Figure 17. 

The EKB model  is still widely accepted (Sihi 2018) and frequently serves as basis for further 

adjustment to integrate specific aspects and research field dependent needs, such as modifi­

cations for an eye tracking study in VR. 

 

Figure 17. The EKB model, dividing customer decision processes into five phases (Engel et 

al. 1968). 

In an eye tracking context, several other decision phase models were developed, e.g., by 

Russo and Leclerc (1994), Gidlöf et al. (2013), and Peukert et al. (2020). These models subdi­

vide decision processes into three phases – orientation, evaluation, and validation. The tran­

sition between different phases  is based on simple rules,  like re­fixations on products. The 

VR study in Peukert et al. (2020) pursued an on­the­fly attempt to determine the phases. Its 

authors used eye tracking data and identified the first comparison between two products as 

shift between orientation  and  evaluation.  Furthermore,  the  shift between  evaluation  and 

verification was considered as the moment when the first product entered the shopping cart 

(We believe this is a questionable criterion because putting a product into the shopping cart 

signals a certain level of confidence).  

For  the  right  timing  of  user  assistance, we  consider  the  shift  between  orientation  and 

evaluation as particularly  interesting. We conjecture  that help  is most appreciated by cus­

tomers after being within  the evaluation phase  for a certain offset duration. To verify this 

assumption empirically, self­reported desired help timings can be used. Knowing the phase 

of a decision process and  the offset duration at  least approximately, a UAS or sales  repre­

sentative can determine a good starting point to approach the customer. 

Motivation and 
recognition of need

Information 
search

Evaluation of 
alternatives

Purchase Outcome
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4.2.2 Neurophysiological Data Collection in VR 

The development of visual VR has a longer history than one might expect. For example, an 

early head mounted display  (HMD) was already developed by Sutherland  (1965). Commer­

cial endeavors of big tech companies still focus on HMD development. For research, the lat­

est HMD  generation  is particularly  interesting because many models  ship with  integrated 

neurophysiological sensors, particularly ET  (Pfeiffer et al. 2020). ET  is  integrated because  it 

can be used to optimize graphic card utilization via foveated rendering, a method which only 

renders the focused area in high detail while neglecting peripheral areas (Patney et al. 2016). 

Recent  research­grade HMDs  include  further  sensors  as  ECG  and  electroencephalography 

(EEG). The integration of EEG into consumer­grade hardware seems rather unrealistic in the 

near and  intermediate­term  future as  the sensor  itself  is expensive and the electrodes are 

relatively uncomfortable to wear. ECG measures a person’s heart rate and is more likely to 

find  its way  into consumer devices. Another sensor, which  is very  likely to be  included  into 

future customer­grade HMDs,  is photoplethysmography  (PPG). PPG  is a  light­based  sensor 

which can also be used to measure heart rate and corresponding metrics. Compared to ECG, 

PPG  is cheaper, easier to attach (e.g., a forehead­sensor  integrated  in the HMD­cover), but 

less  accurate.  It  is  also  imaginable  to  couple wearables with  an HMD, particularly  fitness 

watches, which already  include ECG or PPG sensors. Overall, ET and ECG/PPG are the most 

likely sensors for future off­the­shelf HMDs. Thus, it makes sense to use gaze patterns, pupil­

lometry, and heart rate as data sources for inference. 

4.2.3 Hidden Markov Model 

An HMM  is a statistical model which describes a Markov process with a set of states be­

tween which it can transition (Rabiner and Juang 1986; Eddy 2004). At each state, an HMM 

generates an observation or output symbol, which is associated with that state. Such obser­

vations generated by a state of the model are referred to as emissions. HMMs find applica­

tion in a variety of disciplines (Liu et al. 2023; Krogh et al. 1994; Schultz and Waibel 2001). To 

match the characteristics of our purchase decision scenario in the experimental VR setup, we 

use elements of both  the classic EKB phase model  (Engel et al. 1968) and the eye tracking 

model proposed by Russo and Leclerc  (1994). We begin with a memorization phase which 

corresponds to the motivation phase of the EKB model. During this phase, participants see 

purchase criteria on a blackboard and memorize  them. The  transition between memoriza­
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tion and the next phase is  identified by a button press. For the subsequent phases, we use 

the phase  labels orientation, evaluation and verification as proposed by Russo and Leclerc 

(1994). However, we outline that the state transitions in our model have nothing in common 

with the originally proposed transitions which were based on specific gaze patterns. Instead, 

shifts to evaluation and verification were determined via self­reported timestamps given by 

the participants. Next, we adopt  the purchase phase  from  the EKB model, as participants 

remained  inside the VR scenario after confirming the purchase. Furthermore, an  initial and 

terminal state are added as they are needed for computation. The corresponding HMM with 

flat prior transition probabilities is shown in Figure 18. GMM­HMM with flat prior transition 

probabilities.. 

 

Figure 18. GMM­HMM with flat prior transition probabilities. 

When the model transitions from one state to another, it refers to a (hidden) multivariate 

probability  distribution which  corresponds  to  the  current  input  features.  Internally,  each 

state holds a multivariate Gaussian mixture distribution (what turns the model into a GMM­

HMM), which  is  trained with ET and ECG  features based on  consecutive  five  second  time 

windows. For each of  these windows, our  feature engineering pipeline creates 44  features 

which comprise 26 ET and 18 ECG features. ET features consist of statistical moments (mean, 

min, max, var)  for blinks,  fixations, fixation duration, pupil size, saccadic duration, and sac­

cadic speed. ECG features are limited to the time domain, particularly the heart rate and its 

variability.  Frequency domain  related and non­linear ECG  features  are not  considered be­

cause  they would require  longer window durations  (Pham et al. 2021).  If participants  indi­

cate a state transition during such a window, the label for the subsequent and all following 

windows changes to the next state.  

For real­time inference, the GMM­HMM can even be simplified to a GMM classifier which 

decides  if the evaluation phase  is reached or not. Features of a current observation can be 

shown to the model which maps them to the probability distribution and stochastically de­

cides whether  the evaluation phase  is  reached or not.  If  the evaluation phase  is  indicated 

several times  in a row, the offset of approximately fifty seconds could be added and finally 

the UAS or digital human agent could approach the customer with a help offering. 
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4.3 Experiment 

4.3.1 Participants 

Our sample was collected from 50 participants (29 female, mostly students) with a mean 

age of 24.5 years  (SD=4.89). Only  individuals with normal or corrected­to­normal vision via 

contact  lenses were  accepted  since  glasses would  not  fit  into  the HMD  and  not wearing 

them might confound  the ET data. The participation compensation consisted of a  fixed 10 

Euro  baseline  plus  a  performance­based  component. After  arrival  at  the  lab,  participants 

signed a consent form. It ensured the participants' basic knowledge of the experiment pro­

cedure and informed them that the experiment complied with ethical standards. Further, it 

required  them  to  grant permission  to publish  their data  in anonymized  form.  For  recruit­

ment, we used the participant pool  in our self­hosted online registration platform  (Bock et 

al. 2014) and actively approached students on campus. 

4.3.2 Procedure 

We simulated customer purchase decisions  in VR, collecting ET and ECG data. All virtual 

scenes were  created using  the Unity 2021.3 game engine. Participants entered our  show­

room using a Varjo VR 3 HMD with high­frequency ET capability (sampling rate of up to 200 

Hz) and a display resolution of 2880 × 2720 pixels per eye. A bioPLUX device was used  for 

ECG recording and captured signals with a sampling rate of 1000 Hz. Overall, the experiment 

followed a between­subjects design and  included  two different decision scenarios, one  for 

3D printers and one for washing powders  (see Figure 19). To create realistic shopping sce­

narios, we presented dedicated cover stories to both groups. Participants were then shown a 

list of purchase decision criteria they had to memorize. The end of memorization phase was 

triggered by  the participants using a button press which hid  the criteria and  spawned  the 

products. Then, they had the chance to gain one Euro in addition to their participation com­

pensation  if they matched a previously determined team decision. This monetary  incentive 

helped  to motivate  the participants and  increased  the external validity of  the experiment. 

Participants confirmed their purchase decision either by putting the product into a shopping 

cart or by  clicking a purchase button. After making  the purchase, participants  left  the VR 

environment and answered questions about their decision phases by means of a first­person 

video. This video showed a gaze dot which  indicated their visual attention. Participants de­
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termined  the moments when  they  shifted  (1)  from orientation  to evaluation and  (2)  from 

evaluation to verification. For each of  these phase shifts,  they entered the timestamp  in a 

web­based questionnaire form. Furthermore, participants reported their desired help timing 

for a digital human agent in the same manner as for the phase shifts. 

 

 

Figure 19. Experimental VR setup  

(3D printer decision top, washing powder decision bottom). 

4.4 Results 

For our analysis, we used python 3.10  and  the neurokit2 0.2.3  (Makowski et al. 2021), 

pomegranate 0.4.0 (Schreiber 2017), and scikit­learn 1.0.2 (Pedregosa et al. 2011) packages.  

We verified our conjecture regarding the desired help timing. As expected, help was most 

frequently desired after the shift from orientation to evaluation but before entering the veri­

fication phase. On average, the phase shift from orientation to evaluation was indicated af­

ter 100.2 seconds (SD=79.8) and the shift from evaluation to verification was after 210 sec­

onds  (SD=97.2). Participants  reported  the average desired help  timing  for a digital human 

agent after 148 seconds (SD=115.8), i.e., with an average offset of 48 seconds after starting 

the evaluation phase and 62 seconds before entering the verification phase (see Figure 20). 
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Figure 20. Boxplots of the self­reported phase shifts and the desired help timing. 

Our trained model with posterior transition probabilities is shown in Figure 21. Each state 

is holding a multivariate GMM which consists of multiple Gaussian mixture distributions (see 

Figure 22  left  for a univariate example). We showcase  the  inference of one  full exemplary 

purchase process in Figure 22 right. Such phase predictions can be further refined and lever­

aged by a UAS or sales agent to find the best time to approach customers with an assistance 

offering. It is noteworthy that training duration only lasted 3.21 seconds and with very brief 

inference  times a single observation can be predicted on  the  fly. The mean difference be­

tween  classified and  reported  shifts  from orientation  to evaluation  is  ­0.14  (SD=4.49)  five 

second time windows. Overall, the model fits 84.89% of the five second windows correctly. 

 

Figure 21. GMM­HMM with posterior transition probabilities. 

 

Figure 22. Exemplified univariate GMM for a single feature (left), comparison between 

reported state transitions and model prediction for one purchase decision (right). 

4.5 Discussion 

Our  results show  the  feasibility of  identifying a good  timing  to approach customers  in a 

virtual  commerce  scenario  using  GMM­HMMs  and  thus  yield  an  answer  to  our  research 

question.  The  presented  approach  uses multiple  neurophysiological  sensors  as  input  and 

meets our goal to overcome pure comparison and fixation­based phase determination. The 
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presented methodology  can be adopted by other  researchers and practitioners  to build a 

maybe  soon  to be  realized overarching  virtual platform, offering  a multitude of  intercon­

nected virtual worlds and services. 

This work has  limitations which may  serve as a  guideline  for  future  research.  First, our 

sample almost exclusively consists of students, which limits generalizability. Future research 

should  involve  a  broader  cross­section  of  society.  Second,  the  sample  size  should  be  in­

creased. Our 50 observations yield little variety to equip the model with performant predic­

tive power. Third,  immersion, perceived  telepresence, and perceived product  involvement 

could have been  increased by adding more sensory channels (particularly audio) to the vir­

tual environment. Room size also played a  limiting role, as participants had to remain rela­

tively  immobile and could not fully  immerse themselves  in the virtual space. Regarding the 

applied machine learning techniques, we plan to rigidly quantify the model performance and 

give detailed  information about  the most relevant  features. We also want  to consider  fur­

ther measurements as features, such as electrodermal activity and electroencephalography, 

which eventually might also be integrated into future HMDs off­the­shelf. Finally, we plan to 

evaluate the simplified GMM classifier version of the model in an experimental virtual com­

merce shopping scenario  in which a digital human agent approaches a customer according 

to the timing suggested by the model. 
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5 Paper D: Real agents in virtual commerce 

Tobais Weiß, Asmus Eilks, Felix Putze, Jella Pfeiffer and Tanja Schultz 

Abstract 

Consumers  begin  to  integrate  virtual  reality  (VR)  into  their  daily  lives  and  naturalistic 

shopping interactions without leaving home are one of the promising use cases for this new 

technology.  However,  currently  most  of  the  interactions  in  VR  take  place  in  a  non­

commercial context. To shed light on this lack of virtual commerce adoption, our study uses 

an  iterative software development approach. We evaluate a sales scenario with an avatar­

based sales agent  that  is steered by a human actor. A main  feature of our  research  is  the 

evaluation of different avatars because they facilitate novel, immersive interactions between 

buyer and seller  that differ  from well­studied desktop­based e­commerce scenarios. Previ­

ous avatar studies have shown that striving  for naturalism can  lead  the avatar  to elicit un­

canny feelings in the user. Thus, we investigate the severity of the avatar’s uncanniness qual­

itatively and propose the uncanny valley diagram as evaluation tool. In addition to avoiding 

the uncanny valley effect, our  focus  is on the  timing of  the sales agent's  interference with 

the user. We develop a simple rule set that defines when the agent appears, based on gaze 

patterns. Seventeen participants enter  the  showroom, evaluate  four different 3D printers, 

receive decision support from our human sales agent avatar, and make a purchase decision. 

The participants then answer questions about their experience  in an  interview format. The 

answers  indicate that young consumers value and trust the help provided by digital human 

agents. In terms of the uncanny valley, the study documents occurred technical challenges, 

such as motion tracking inaccuracies and face tracking issues, that our participants perceived 

as uncanny. Regarding the  interference timing, participants wanted the agent to appear af­

ter they had sufficient time to get an overview of the product assortment. 

Keywords: Interference timing, Motion Tracking, Uncanny Valley, Sales Agent Avatar, Vir­

tual Commerce 

 



    119 

 

5.1 Introduction 

Avatars  are widely  understood  as  digital  representations  of  humans  and  other  entities 

[15]. Recently, the  immersive  features of  state­of­the­art virtual reality (VR) headsets have 

added a new level of realism to avatar interactions, entailing growing popularity of social VR 

applications, such as VRChat [19]. Therefore, the use and  impact of avatars  is growing, and 

they are deemed to play a vital role in the transformation of today's Internet and shopping 

culture. The use of avatars has been studied  in various  forms of computer­mediated com­

munication [8, 32, 38, 40, 54] and digital representations of the user have long been an inte­

gral part of the VR technology [42]. In VR, the communication and interaction between enti­

ties can be more naturalistic compared to representations on a desktop computer [26, 60]. 

With  ongoing  technological  advancements,  there  are  additional  technical  opportunities, 

such as  face­ and eye­tracking, which allow  for nonverbal  interaction and  information ex­

change between digital communication partners. Recent authors, such as Hennig­Thurau et 

al.  [33], have stimulated  the scientific discussion about avatar  interaction and have shown 

that more avatar research is needed to keep pace with technological advancements. 

Further recent empirical VR studies that  investigated consumer behavior have mainly fo­

cused on fast­moving consumer goods [10, 61, 62]. To answer a research call for more prod­

uct  variety  in  consumer behavior  research using VR  [80], our  shopping  scenario  frames  a 

purchase situation for a technology product (3D printers) in a virtual commerce showroom, 

as  shown  in  Figure 23. We  chose 3D printers as products, because  the purchase decision 

depends on various criteria and may be  rather complex  (in comparison  to grocery goods). 

Thus, it is likely that our participants have questions and require help of a sales representa­

tive. 

Building on previous eye  tracking  research  that  exploits visual attention mechanisms  to 

delineate different decision­making subphases and transitions [59, 67], we develop interfer­

ence timing rules for the digital human sales agent. We choose the uncanny valley effect [50] 

as one of the main aspects of our qualitative evaluation because results of previous research 

report the  impact of uncanniness on the  likeability of the avatar  [17]. By  incrementally ad­

justing  the  technical setup, we aim  for achieving a  level of avatar  fidelity  that participants 

can appreciate. We refine our understanding of how to avoid the uncanny valley, and how to 

apply a good timing rule set for the appearance of a digital human agent. 
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The goal of our research is to design, evaluate, and continuously improve a sales interac­

tion between a consumer and a digital human agent. We compare an avatar of a fully mo­

tion­tracked sales agent wearing a VR headset to an animated avatar of a sales agent who 

controls the avatar on a desktop computer in third­person view. Moreover, we evaluate dif­

ferent approaches to represent  facial expressions and speech. Where applicable, we docu­

ment  generalizable  barriers  and  boundary  factors  that  limit  the  adoption  of  virtual  com­

merce  shopping  and  the use of digital human  sales  avatars. We  iterate  through different 

hard­  and  software  setups and  solicit  feedback  from our participants. By aggregating and 

presenting  their  sentiments, we  seek  to  refine  guidance  for practitioners with  similar  en­

deavors. To summarize, we let us guide by the following research questions: 

RQ1: How do participants perceive our sales agent avatar in terms of the uncanny valley effect? 

RQ2: What simple rule set lets participants appreciate the interference timing of our agent? 

 

 

Figure 23. Virtual commerce showroom for technology products. 

5.2 Theoretical Background  

5.2.1 Avatars 

Avatars  represent different entities  in digital environments, usually users and bots  [48]. 

Most avatar definitions assume or imply that the primary purpose of an avatar is to facilitate 

engagement and  interaction of a user with  the environment  and, more  importantly, with 

other entities [15]. Avatars play a crucial role in virtual worlds and video games because they 

provide the means to  identify with something and allow for embodiment  in a virtual space 

[53]. Depending on the technical effort, avatars can facilitate complex actions, such as non­

verbal  communication  through  gestures, posture, proxemics,  and even haptic  interactions 

[66]. 

For e­commerce, various aspects of sales avatars have been studied, such as credibility, 

social presence,  and  trust  [4,  35,  45,  69,  74]. However, only  recently have  related avatar 
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studies been conducted in the context of immersive virtual commerce, such as [82]. Most of 

these previous studies  in the  immersive virtual commerce context focus on avatars for the 

consumers themselves [34, 49] or for their peers [36, 75]. 

5.2.2 The uncanny valley 

The concept of the uncanny valley [63], as depicted in Figure 24, refers to a phenomenon 

in which human­like avatars or  robots elicit negative emotional  responses  from observers 

because they are not convincingly realistic. The phenomenon was first described and coined 

by Mori  in 1970  [50]. Mori used so­called Bunraku puppets  that are a part of a  traditional 

Japanese  puppetry  show.  These puppets  are human­like  but  can have  imperfections  that 

might lead a viewer to perceive the puppet as uncanny, eerie, or ghostly. 

 

Figure 24. The uncanny valley diagram (Mori 1970). 

To explain why the uncanny valley manifests, the categorical uncertainty hypothesis pro­

poses that the discomfort or unease people experience when observing certain human­like 

entities is due to uncertainty about their categorization [63]. Accordingly, a cognitive conflict 

occurs when humans encounter entities that appear almost human but have slight imperfec­

tions. The  categorical uncertainty hypothesis  further  suggests  that  the human brain has a 

natural tendency to categorize and classify objects and beings based on their resemblance to 

familiar prototypes or stereotypes.  If avatars approach a high  level of  realism but may  fall 

short  in some ways, human brains may have difficulties placing them  in one category. The 

avatars may not fit neatly into the human category, yet they may appear human­like enough 

to  raise expectations about human­like behavior  that are not  fulfilled. This ambiguity may 

create a cognitive dissonance and trigger a feeling of unease or discomfort. 
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The categorical uncertainty hypothesis is just one of several theories proposed to explain 

the  uncanny  valley  phenomenon.  Other  theories  emphasize  factors  like  perceptual mis­

match, perceptual  familiarity, or violation of human norms  [81]. Recent publications argue 

for a change in the depicted curve and offer explanations based on evolutionary psychology 

theory and cognitive conflicts [24, 46]. 

5.3 Method 

The  iterative design of  this qualitative  study adopts  ideas  from  agile  software develop­

ment [2] and design science research [56, 57]. As Figure 25 shows, we implement a feedback 

loop and incrementally refine our virtual environment to gain an understanding of consumer 

perception of the avatar’s uncanniness, interference timing, and other explorative factors. 

We collect the data in a multi­location lab­linking setup [71, 73] that closely resembles the 

technical hurdles of future virtual commerce interactions. For each design and development 

cycle, we modify and optimize the sales agent avatar and extend the question catalogue  if 

new concepts emerge. In retrospective evaluation meetings after each iteration, we discuss 

the results, possible technical improvements, and changes needed for the next iteration. 

 In the feedback loop, we iterate through five design and development cycles with a total 

of 17 participants, with previous  interviews  informing  the next  iteration. To collect partici­

pant feedback, we choose an interview format because previous qualitative research in vir­

tual commerce context exists, such as [23, 79], but  is underrepresented [78]. To create the 

question catalogue, we follow the guideline by Kallio et al. [39] for a semi­structured  inter­

view. The single steps of the guideline are represented as subprocess of the initial interview 

design in Figure 25. 

 
Figure 25. Research design overview (adopted from [57] and [39]). 
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Findings, explanations, and opinions about the uncanny valley are diverse [24, 46, 81]. We 

refrain  from debating  its  correctness but use  its original visual  representation  to help our 

participants during the interview. For a better insight into the participant’s feelings towards 

the avatar, we give them a sheet of paper with the uncanny valley diagram (Figure 24). After 

making sure that the participants understand the concept, they mark an area on the uncan­

ny valley diagram and describe their perception of the digital human sales agent during their 

conversation. We then ask our participants to verbalize how they think and  feel about the 

avatar in the experienced scenario. With their answer, we let the participants  indicate their 

attitude towards the avatar and reflect on their reasoning during the decision­making pro­

cess. 

After completing  the  interviews, we  transcribe  the audio  recordings  in automated man­

ner, check for wrong or missing content, and annotate the texts with speaker labels. If words 

are missing or  sentences are obviously wrong, we  correct  them manually using  the audio 

file. In the next step, we import the corrected and formatted interview texts into the  label­

ling tool Taguette [64] and label them. With the extracted statements grouped into catego­

ries, we inform the subsequent research iteration, and finally report our findings. 

5.3.1 Showroom environment 

For  the spatial  layout of  the environment, we chose  two circular  rooms connected by a 

door (see Figure 26). One room represents the showroom where customers enter and eval­

uate  the products;  the other  room  is a waiting  room  for  the agent. Participants  can print 

example 3D objects with  timelapse speed  to see  the visual difference  in print quality. This 

interactive demo printing is one of the virtual showroom features that stand out, in compar­

ison to traditional e­commerce websites. 

Initially, the connecting door between the two rooms is closed, so that the consumer and 

the agent are separated. After one of  the appearance criteria  is met,  the agent opens  the 

door, greets  the consumer, and offers help with  the purchase decision. The consumer can 

ask questions, further evaluate the options, and finally choose one of the products. After the 

sales conversation, the agent guides  the consumer  to  the checkout and helps  to complete 

the purchase. 



    124 

 

 
Figure 26. Showroom and agent waiting room layout. 

5.3.2 Sales avatars 

The  sales  avatar  consists  of  several  components,  such  as  a  skeleton,  animations,  and 

blend  shapes  (which we  use  to  animate  facial  expressions).  However,  the  visually most 

prominent  feature of  the avatar  is the 3D mesh and  its  texture.  In  this study, we evaluate 

and compare two of the most widely used avatar frameworks currently available, Rocketbox 

[30] and Readyplayerme  [3]. Both  avatar  types are humanoid and allow  for  facial expres­

sions. A key difference between the two avatar providers is the customizability. The Rocket­

box  library only offers a pre­made set of models while Readyplayerme, on the other hand, 

provides a web interface that allows users to generate an avatar based on a webcam photo 

and customize it further according to their wishes. 

5.3.3 Interference timing via eye tracking 

To  realize  the gaze­informed agent  interference  timing, we  introduce a gaze dashboard 

for the agent in the waiting room. This gaze dashboard shows the visual attention of partici­

pant and tracks the time spent looking at each of the four individual products (see Figure 27 

bottom left). The Varjo VR­3 headset has eye tracking sensors that allow to identify the visu­

al  attention on  the different products  via  ray  casting  [1]. We display  the  aggregated  gaze 

durations on the products in real­time. Watching the accumulating durations of the different 

products allows the agent to  identify comparison patterns and the order  in which the cus­

tomer evaluates the options. 
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Figure 27. Interference timing of the agent based on the gaze dashboard values. 

 

In terms of decision sub­phases (orientation, evaluation, verification, and purchase [67]), 

we  let the agent start the  interaction with the consumer shortly after entering the evalua­

tion phase. We  identify  the  transition  from orientation  to evaluation  by  the  first pairwise 

product comparison [59]. In other words, our strategy lets the participants gain an overview 

of  the assortment, and  the agent  interrupts only after  they  form an own  first  impression. 

This appearance paradigm  lets the participants  first read product  labels and develop ques­

tions before the agent appears and offers help. 

5.4 Results 

The 17 interview recordings contain a total of 587 conversation sections that are relevant 

for the analysis, comprising a total of 22,000 words. Our  labels cover 42 different concepts 

and the three most  frequent ones  in descending order are the general conversation topics 

"Shopping experience", “Sales agent avatar”, and "VR experience". As shown  in Figure 28, 

the frequency for conversation parts that cover the “Uncanny valley” ranks fourth. 
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Figure 28. Bar plot of the discussed concepts during the interviews. 

In Table 13, we summarize the key features of the interview iterations with the respective 

attributes of the environment and number of interviews. The ID consists of following abbre­

viations: Rocketbox (RB), Readyplayerme (RM), Full­body (FB), Third­person (TP), Static­body 

(SB), Static­face  (SF), and Oculus­Lipsync  (OC). Figure 29 depicts  the categorizations of  the 

sales avatar on the uncanny valley diagram grouped by the single iterations, where full­body 

motion­tracked  iterations are  indicated by a circle, third­person steered  iterations are  indi­

cated by a square, and iteration 5a (RM­SB­OC) is indicated by a triangle. 

Table 13. Interview iterations in chronological order. 

Order  ID  Avatar provider  Steering mode  Facial  

expressions via 

# Inter­

views 

1  RB­FB­VI  Rocketbox  Full­body motion tracking VR  Vive Facial Cam  2 

2  RB­TP­SF  Rocketbox  Third Person on desktop PC  Static face  3 

3  RM­FB­SF  Rocketbox  Full­body motion tracking VR  Static face  4 

4  RM­TP­OC  Readyplayerme  Third Person on desktop PC  Oculus lip sync  3 

5a  RM­SB­OC  Readyplayerme  Static body VR  Oculus lip sync  3 

5b  RM­FB­OC  Readyplayerme  Full­body motion tracking VR  Oculus lip sync  2 
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Figure 29. The uncanny valley diagram (Mori 1970) with added participant  

opinions about the sales agent for the interview iterations. 

Overall, our design and development  iterations  led to a full­body motion­tracked Ready­

playerme avatar with audio­based facial expressions (Iteration 5b, RM­FB­OC). Still, full­body 

motion tracking  in VR was not satisfactory because abrupt teleportation movements of the 

agent drastically reduced the perceived human­likeness of the agent. Particularly at the be­

ginning of the conversation, the agent had to be careful to get the participants’ attention 

before coming close to them using several small distance teleports. 

5.4.1 Motion­tracked VR agent with Vive Facial Tracker (RB­FB­VI) 

As a starting point to represent our digital human sales agent, we used an avatar from the 

Rocketbox library that has been applied in previous research setups [20, 24, 45]. The avatar 

mimics a traditional businessman wearing a black suit and a white shirt with a tie. Both par­

ticipants perceived the avatar as highly uncanny. One of the participants stated that the ava­

tar was like a zombie, immediately after seeing the uncanny valley depiction (see Figure 29). 

They  indicated that this feeling was mostly caused by glitches, visual  imperfections, and  in­

accuracies  in  the motion capture  system  (because we experienced moderate  fitting  issues 

with  the passive motion  tracking markers of  the  full­body motion  tracking  suit). The mis­

match of  the markers  resulted  in brief periods  in which  the motion  tracking software was 

unable to correctly map the skeleton or parts of it, such as a single leg. This mismatch result­

ed in abnormal positions that most likely contributed to the perceived eeriness. Even though 
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both  participants  experienced  further  technical  issues  (wrong  floor  calibration  and  issues 

grabbing things), they felt present in the scene. One participant criticized the scene lighting 

during this iteration. They said that “[...] the shadows of the figure look pretty scary”. How-

ever, both participants perceived the virtual showroom as aesthetically fitting. 

For the first participant, the interference timing of the avatar was far from ideal. The sales 

agent approached the participant by teleporting (too) close but outside of the participant's 

field of view. This  led to a negative first  impression and a rough start for the conversation. 

The participant was startled by  the voice  that suddenly spoke  to  them  (even  if  they knew 

that the agent would appear at some point in time). They also mentioned that the task was 

not fully clear. For the second participant, the first  impression was better, and the appear­

ance and welcoming procedure went smoother compared to the first participant. Regarding 

the sales agent interference timing, the participant stated: "Maybe for some people, it might 

be too early, I think. For instance, if they are reading not that fast and they still did not figure 

out all about the description and what the team wants and what the model has". After ex­

plaining our appearance strategy, they added that “it would be more convenient if I have 

enough time for thinking and considering”. 

When asked  if  they trusted the avatar's guidance, one of our participants said  that they 

could imagine such an avatar as a digital shopping companion. In their opinion, it would be 

interesting to face a female avatar because women tend to go shopping with their friends. 

The  other  participant  in  this  iteration  stated  that  they  preferred  to  inform  themselves 

through reviews and videos instead of interacting with a sales agent. 

5.4.2 Agent with static face (RB­TP­SF) 

Since the uncanny perception of the agent was driven by the marker mismatch, we decid­

ed to modify the motion paradigm. We simplified our setup and animated the avatar instead 

of using the full­body motion suit and the facial camera. Moreover, we equipped the Rock­

etbox avatar with simple walking and resting animations. This had the disadvantage that the 

avatar could no  longer use body  language or display facial expressions as  in the  first  itera­

tion. We also changed the appearance criteria to account  for the  feedback of the previous 

session. We  introduced  fallback options  if  the gaze pattern  rule was not met  for  too  long. 

Starting with this iteration, the sales agent joined the consumer after at least one of the fol­

lowing three criteria was met: 
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(i) Each product viewed for more than 20 seconds, or 

(ii) Total time more than two minutes, or  

(iii) The participant called for help or had obvious problems. 

 

The  regions on  the uncanny valley diagram  that  the participants of  this group  indicated 

clustered around the medium human  likeness and medium affinity regions. The mostly  idle 

avatar was perceived as quite unrealistic, and participants noted the lack of facial and body 

animation as one core issue. However, due to this decidedly artificial appearance, the avatar 

was not  considered uncanny. Participants  clearly  stated  that  they perceived  the avatar as 

“not in the problematic spectrum” and “definitely not [as] a zombie or corpse” as in the first 

iteration. 

For two of the participants, the appearance of the sales agent was too early. One of them 

made the discrepancy more palpable, adding that they would have  liked approximately ten 

more seconds on their own. 

Participants felt present in the showroom and reported that they were mostly unaware of 

the outside world during the experience, aside from minor environmental noise that sporad­

ically distracted them. Overall, they expressed positive general  feedback and all comments 

about their  intentions to use similar virtual commerce environments were positive. Partici­

pants  also  stated  that  they  trusted  the  avatar  because  it  embodied  a  real  human  agent. 

However,  they were  concerned  about  a  potentially  fully  digital  artificial  intelligence  (AI) 

agent. They argued that such an entity might not be fully adjusted to their personal needs 

and instead trained to maximize sales rather than provide ideal consultation. 

5.4.3 Motion­tracked VR sales agent with static face (RM­FB­SF) 

Following the  improvements regarding the perceived uncanniness  in the animated  itera­

tion, we decided  to  reintroduce  full­body motion  tracking,  to  investigate whether  the  re­

moval of  full­body motion tracking or  facial  tracking caused the reduced uncanniness. Fur­

thermore, after analyzing  the avatar  feedback, we  substituted  the Rocketbox with Ready­

playerme  avatars. Apart  from more  compatible blend  shapes,  changing  the  avatar  frame­

work provided additional benefits: While we had to choose from a set of predefined avatars 

using the Rocketbox library, the Readyplayerme API allowed us to create a personalized ava­



    130 

 

tar from a webcam photo, and we further customized the avatar appearance from a set of 

predefined outfits and accessories. 

We slightly adjusted the session protocol and instructed the actor to be more aware 

about the startling effect of teleport movements. We advised the actor to clearly teleport 

into the consumer's field of view at an appropriate distance (especially not too close) to im­

prove the consumer's first impression. As the topic came up during previous iterations, we 

added a question about trust in a hypothetical AI agent to our question catalogue. 

Participants stated that they perceived the avatar as static, somewhere between human 

and robot, but closer to the human. Compared to the first  iteration, participants perceived 

this avatar as  less uncanny. None of the participants stated that they were scared,  though 

one  participant was  startled  by  the  avatar’s  appearance,  as  they  did  not  notice  how  the 

agent entered the room. Most participants stated that they felt present  in the virtual envi­

ronment during the experience, although one clearly remarked that they were always fully 

aware of being in a real room. 

All three answers regarding the sales agent's appearance  indicated  that the  interference 

timing rule set worked as intended. In one of the sessions, the actor applied rule (iii) as the 

consumer was asking  themselves questions. One participant perceived  the  appearance as 

slightly too early and said, “I could have easily just watched by myself for another short mo-

ment.” 

In  terms of perceived  trust, one participant stated  that  they would  trust  the avatar  less 

than a human sales agent in the real world. They argued that they would be concerned that 

the person steering the avatar might be hiding their intentions. The third participant stated 

that  they would  trust  an AI  agent more, mentioning  that  the AI  could  eventually  have  a 

broader knowledge base than a human and could therefore be more helpful with facts. 

5.4.4 Third­person sales agent with Oculus lip sync (RM­TP­OC) 

Since participants criticized the static nature of the avatar's face as major issue during the 

previous  iteration, we replaced the Vive Facial Cam  that we used  in the  first  iteration with 

viseme­based  facial  expressions  using  the Oculus  lip  sync  framework.  Visemes  are  audio 

based and, thus, have the benefit of not needing a facial camera but are less accurate. They 

can be thought as different extreme facial expressions and mouth shapes that we blend to 

make the avatar look like it is talking. 
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We applied the interference timing rule set as in the previous iterations, and again, partic­

ipants  perceived  the  salesperson's  appearance  as  appropriately  timed.  They  consistently 

reported that they were not scared or frightened by the avatar but perceived it more as ro­

bot or character  in a video game.  It therefore appears that while the visemes did not elicit 

uncanny feelings, they also did not substantially improve how realistic the avatar appeared. 

As  in  the  previous  iteration,  participants  stated  that  they  trusted  the  guidance  of  the 

agent but indicated that they would do so less in the case of an AI­based agent. One partici­

pant uttered the rationale that they value the subjective experiences a human salesperson 

can share compared to an AI agent. For widespread adoption of such a system, one partici­

pant had concerns that it would be easy for sellers to hide product flaws in VR. 

5.4.5 Static VR sales agent with Oculus lip sync (RM­SB­OC) 

Following  the  fourth  iteration with  successful  lip  sync  for  the  sales  agent  controlled  in 

third­person view, we evaluated  the viseme­based approach  in combination with  full­body 

motion  tracking. By doing  so, we  tried  to minimize uncanny artifacts  that we experienced 

with the Vive Facial Cam that we used in the first iteration. 

A  technical  issue caused  that  the avatar stood statically without any movement despite 

the  lip sync and teleportation. Since the planned  interviews took place sequentially on the 

same day, we decided  to continue with  the sessions and collected  the remaining observa­

tions for this day with the static avatar setup. 

For  this  round, our appearance  rule set yielded acceptable  results because  three out of 

four participants perceived the agent's interference timing as good. For the remaining partic­

ipant,  the  interference  timing was  too  early. Upon  interference,  they  even  told  the  sales 

agent to wait, and only after more than another minute they started to ask questions. How­

ever, we were not able to derive a meaningful general rule for their case. 

Participants did not perceive the avatar as uncanny, stating that the static nature made it 

too unrealistic. Two out of three participants experienced minor controller  issues but all of 

them stated that they felt fully present in the virtual scene and that they were not aware of 

the outside world anymore. Moreover, two participants stated that they trusted the agent's 

guidance and  intentions and that they believed they would do the same  if an AI controlled 

the agent. Interestingly, the third participant stated that the static avatar seemed too unre­

alistic to be trusted. So, realism and trust in virtual commerce settings may be correlated. 
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One participant noted that, while they liked this scenario, they would certainly not enjoy 

virtual commerce shopping for every product category. As an example, they stated that they 

would not enjoy a virtual environment where they would have to move around to pick up 

small  products  as  in  a  grocery  store.  Another  participant  stated  that,  compared  to  e­

commerce, they appreciated the ability to look at products from all angles and in the correct 

proportions. 

5.4.6 Motion­tracked VR sales agent with Oculus lip sync (RM­SB­OC) 

For this iteration, we solved the previous tracking issues and evaluated the full­body mo­

tion tracking with the viseme­based Oculus lip sync. One participant perceived the avatar as 

human­like and stated  that the avatar's use of gestures aided their trust  in the agent. The 

other participant differed in their opinion, stating that the avatar was not creepy, but more 

akin to a robot than a human. The respective mark on the diagram landed slightly closer to 

the uncanny region than we intended. 

Still, this iteration yielded positive feedback for our appearance rule set and both partici­

pants  stated  that  the avatar came  to  the  showroom  to assist  them with good  timing. The 

participants  noted  that  they  felt  present  in  the  scene,  not  noticing much  of  the  outside 

world. They stated that they had minor issues with the controller handling but were overall 

able to navigate and interact. 

One participant  stated  reservations  about buying more  expensive  goods  in VR,  arguing 

that they would not trust a simulation. For higher­priced goods, they would still  like to see 

and evaluate  the devices  in real  life. Both participants stated that  they trusted the agent's 

guidance and would trust an AI  less than a digital human agent. One participant remarked 

that  they would not  trust  the  agent  in  general without own  research  about  the product. 

Overall, both participants said that they enjoyed the experience and that they would like to 

use similar systems in the future. 

5.5 Discussion 

5.5.1 Uncanny valley effect 

Regarding  the uncanny  valley  effect  (RQ1), our  interviews  reflect  a promising  improve­

ment across the iterations. In our early attempts, technical issues were clearly a major con­
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tributor to the perceived uncanniness, and  in the very first  iteration we  landed right at the 

bottom of  the uncanny  valley. Our  final  iteration  contrasts  this,  in which our participants 

marked the agent’s appearance in a desirable region of the uncanny valley diagram that is 

close to but not within the critical uncanny valley. Participants perceived  full­body motion­

tracked avatars steered  in VR as superior  to  the animated avatars.  In other words, partici­

pants perceived the animated avatars that were steered  in  third person view on a desktop 

computer as robotic, and facial tracking did not change the robotic emanation. For instance, 

one participant said “[...] it's not exactly human […] it was a bit robotic.”  As  further  im­

provement, we suggest switching to another movement paradigm for the teleport action (as 

instant  teleportation of  the agent  confused  some of  the participants) or using  continuous 

movements with inverse kinematics [14]. 

5.5.2 Interference timing 

For the sales agent’s interference  timing  (RQ2), we  first  started with  the  simple  rule  to 

wait until the participant inspected all products for at least ten seconds. Already with a lim­

ited number of observations,  it became clear that one single  threshold value would hardly 

be enough to satisfy the preferences of a wide range of consumers. Already in the first itera­

tion, the first participant suggested that this criterion may lead to premature interference of 

the  sales  agent.  To  incorporate  this  feedback, we  implemented  a  slightly more  advanced 

visual representation of the participant’s gaze. We provided a dashboard to the sales agent 

that showed the gaze time per product in real time. We also changed the overall timing and 

the question catalogue. When the actors applied this slightly more advanced rule set, most 

participants perceived  the  interference  timing as good. The gaze  time per product may be 

reduced from 20 seconds to 10 seconds because two of them indicated that the sales agent 

could have appeared a bit earlier ("about 10 seconds earlier", "a bit too long waiting time for 

me"). Overall, the interviews suggest that we defined an adequate and still simple rule set, 

which may be adapted and further individualized dependent on the context at hand. 

5.5.3 Other hindrances and boundary factors 

With exceptions, the participants stated that they would trust a human sales agent. When 

asked about  the  importance of motion and  face  fidelity  to  foster  trust, participants  found 

body  language more  important  than  lip movements. They would  further  trust a digital hu­
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man sales agent more than an AI, but less than an in­person interaction with a salesperson. 

Participants were primarily concerned  that a malicious sales agent could mimic persuasive 

body  language and  fake  social cues. The prevailing opinion emphasized  the  importance of 

the human element that still elevates trust, both in motion fidelity and decision support. The 

actual perceived trust of our participants did not noticeably change between iterations, what 

implies that a human sales agent, fully body tracked or not, fosters consumers' trust  in our 

showroom.  It  remains  an  open  research  question whether  a  human­like  appearance  and 

movement, that goes beyond the one implemented in this work, can overcome the uncanny 

valley completely but for now it remains highly recommendable to aim for its lower end. We 

conclude that of whether the sales agent is a real human, or a fully automated AI algorithm 

had the greatest impact on our participants’ perceived trust, and that the preference for or 

against a human versus AI agent was highly individual. 

Privacy awareness was mostly present, but participants had few concerns about ET data. 

Twelve out of the seventeen participants  indicated that they either did not view ET data as 

important or that they did not have strong feelings about their ET data being collected. Par­

ticularly for scholastic purposes, they saw no problem in sharing their ET data and behavioral 

data. In the interviews of later iterations, we asked participants how they consider ET data in 

comparison to their spatial location. Of the eleven participants to whom we asked this ques­

tion, seven responded that they considered the spatial location more critical than gaze data, 

while only one participant considered ET data more critical. Six participants noted that, while 

they were  comfortable with  companies  collecting  their ET data,  it was  important  to  them 

that the company stores their data securely. One participant noted that they would  like to 

have gaze dashboard for  themselves,  so  that  they could  see  the data  to  reflect  their own 

attention and factor it into their purchasing decision. 

When asked whether participants would have preferred  to call  the  sales  representative 

manually, we  found mixed  results. With eight participants, a  slight majority of our partici­

pants favored the active agent invocation via button. The preference for or against automat­

ic  interference may depend on  the general sales attitudes  [31] and  further  impact  factors. 

We call for future quantitative studies that answer the question of whether consumers pre­

fer active invocation via button/speech recognition or automatic (passive) interference. 
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5.6 Conclusion 

Our  interviews  indicate  that  agents  are  relevant  to  virtual  commerce,  and  this  paper 

shows that we can reduce their uncanniness during five design and development iterations, 

without overcoming the issue completely. Our findings serve as a first indicator because they 

reflect  the opinions of a  limited number of people with similar demographic backgrounds. 

We outline the role of digital human sales agents as a key aspect of future virtual commerce 

and  provides  guidance  for  their  implementation,  for  example  by  documenting  the  differ­

ences between motion­tracking VR and third­person desktop­controlled avatars. Our  inter­

views  shed  light on  consumer perceptions of digital human  salespeople, and  the  iteration 

summaries can guide  researchers and practitioners  in designing  similar environments. The 

results may also be of interest to other domains. For example, avatars and avoiding the un­

canny valley are also applicable  to  tutors  in educational and  instructors  in professional  in­

dustry  training. To substantiate our claims,  it would be necessary to confirm  the results of 

the interviews with a quantitative experiment. Further research opportunities are to extend 

the gaze dashboard or to evaluate different interference timing rules quantitatively.  
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5.7 Supplementary material 

5.7.1 Cover story 

Please imagine the following scenario: 

You and a team of fellow students develop a board game  idea. The team decides to put 

the idea into practice and builds a prototype. In a collaborative effort, you design the game 

pieces in a 3D software. Now you want to evaluate producing these models. 

 

For the production, your team decides to purchase a 3D printer. However, an abundance 

of different printer variants exists. We offer you  the opportunity  to evaluate different 3D 

printers  in a virtual environment. Now, you put on VR glasses and enter our showroom.  In 

the virtual environment, you see decision criteria that your team considers  important. Fur­

thermore, you see several 3D printers with their properties. Your task is to choose the right 

product. Before the experience, we asked a group of people to agree on which printer is the 

right choice for your team. Do you have any questions? 

5.7.2 Agent knowledge 

During the experience, we ask the consumer to choose one of the products, given the cri­

teria shown in Figure 30. The products look as depicted in Figure 31. The agent approaches 

the  consumer, welcomes  them  to  the environment, and offers  to answer questions  if  the 

consumer has some. Then, the agent moves next to the product table (right, in sight of the 

consumer when evaluating the products) and waits for requests. When the participant has 

made their decision, the agent accompanies the consumer to the checkout and explains how 

to finalize the purchase. 

 

Figure 30. Decision criteria. 
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Figure 31. Products. 

The agent has the following knowledge regarding the product criteria: 

• Easy  device  setup: We  offer  two  different  types,  ready­made  and  self­assembly 

kits.  If  participants  ask,  advise  them  to  go  for  the  ready­made  variant.  Self­

assembly kits are rather for hobbyists and the time it takes is not economical. 

• PETG material printable: Three types of print material (so called “filament”) are 

common: ABS, PLA, and PETG. The full material names are not important. Instead, 

it  is  important  that  the printed miniatures are durable,  i.e., do not break during 

fierce gaming sessions. First, ABS requires very high printing and heat­bed temper­

atures.  It  is also  recommended  to use an additional  cover  to prevent  the model 

from  deforming  during  the  print  process.  Overall,  the  cost­benefit  ratio  is  not 

great. Second, PLA, which is the cheapest and easiest to work with material, is not 

an option because  it  is not durable enough. Figures would  tend  to break on  fre­

quent  usage.  The  third  option,  PETG,  combines  the  strengths  of  ABS  and  PLA. 

While  it only requires a moderate printing temperature, the resulting objects are 

durable and robust. 

• High print quality: The print quality can be  judged by the printed models. A high 

quality  is represented by a high­poly rabbit and a  low quality  is represented by a 

low­poly rabbit. The two models “Explorer” and “Solid” have low quality. The 

agent  should  encourage  the  participants  to  try  out  the  printers  themselves  by 

pressing  the print button. The agent  can also press  the button  themselves  if  re­

quired. 

• Fast print speed: All models, except the “Explorer” model print in fast mode (ap-

prox. 10 sec.). Again, the agent should encourage participants to try it themselves. 
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• The device should not catch fire: Fire protection certification after the DIN norm is 

not necessarily required. The certified “Pro” product still can catch fire. Certifica-

tion  is no 100\%  guarantee. For all products,  consumers are  strongly advised  to 

place the printer on a non­flammable underground,  i.e., concrete. For the partici­

pants, certification should not be a major decision­making criterion. They should 

make sure that the device does not catch fire by the mentioned safety measure. 

• Large model print  size: The miniatures  should be  relatively/possibly  large, which 

speaks for the “Plus” and “Pro” versions. Roughly 30cm vs. 20cm (Explorer and Sol-

id) maximum model size is a noticeable difference. However, the additional 2 cen­

timeters in each dimension of the “Pro” variant in comparison to the “Plus” variant 

is not that important. 

• Good  value  for money:  Finally,  the  cost  effectiveness  is  another  (striking)  argu­

ment to buy the “Plus” variant. The “Plus” model is more than 20% cheaper and if 

it  is placed on a fire­proof surface (which  is suggested for all models),  it offers no 

relevant disadvantages over the “Pro” variant. Thus, the “correct” choice is the WS 

3D  Plus model.  The  agent  should  try  to  recommend  the  features  of  this model 

without revealing that this is the “right/desired” outcome. 

5.7.3 Question catalogue 

• Can you please introduce yourself and tell us something about your VR experience 

so far.  

• How often did you have a VR headset on before the experience? 

• There is a concept called Uncanny Valley. It says that very humanized representa­

tions seem ``uncanny''. When you look at the Uncanny Valley scale, where do you 

place the avatar of the experience? [Participant is given a sheet with the uncanny 

valley, see Figure 29] 

• Were there any technical problems with the experience? 

• How present did you feel? 

• Could you imagine going shopping in such an environment? 

• If VR shopping would become  really popular, would you  trust  the avatar and his 

advice? 
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• Now about the avatar of the advisor. How did it feel to face a human in the form of 

an avatar? 

• How did you feel about the timing of the appearance?  

• Did the agent come at exactly the right time?  

• If not, when would it have been better for him to appear? 

• Would you have preferred to actively call the agent yourself? 

• How real did the avatar feel? 

• What  thoughts  come  to  your mind when  you  think  about  your  gaze data being 

analyzed? 

• What measures would you like to see in a commercial product to protect your per­

sonal data? 

• You have now experienced our interpretation of a virtual commerce scenario.  

• Any final general words about the VR experience? 
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6 Paper E: Adaptive product comparison assistance in virtual reality 

Tobias Weiß, Jella Pfeiffer and Martin Meißner 

Abstract 

The exponential growth of online transactions and the proliferation of e­commerce plat­

forms have  led  to  the necessity of effective user assistance mechanisms. As  retail evolves 

into  the digital  realm,  the  role of User Assistance Systems  (UAS)  is pivotal because useful 

adaptations  help facing the challenges associated with consumer’s shopping experiences, 

ranging  from product discovery and selection to payment and post­purchase support. New 

interaction paradigms  demand  for  experimental  evidence underpinning  that  the  adaption 

really helps the consumer with their decision­making process. We investigate if the adaptive 

UAS  is too smart  for  its own good and  focus on the critical moment of system appearance 

and  its  impact on consumers trust  in a virtual reality (VR) retail scenario.  In our  laboratory 

experiment with 120 participants, who all made three different purchase decisions for mues­

li products,  a  comparison matrix UAS was either present  from  the beginning or appeared 

after  the participants began comparing  two products. This product comparison was deter­

mined by means of eye tracking. Our data analysis unveils the impact of context­awareness 

and explanations about the adaption mechanism on consumer trust. We find a negative rela­

tion between context­awareness and trust with competing mediations via perceived control 

over the UAS and intelligence of the UAS. For practitioners, our findings suggest that offering 

product comparison UAS in VR retail environments immediately outperforms context­aware 

interference timing in terms of building trust. 

 

Keywords: Consumer Behavior, Eye Tracking, User Assistance System, Virtual Commerce, 

Virtual Reality 
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6.1 Introduction 

In  retail, gaining and maintaining consumer trust  is a clear success  factor, and ven­

dors seek to foster trusting beliefs of their clients by paying close attention to their individual 

needs  (Bauman & Bachmann, 2017; Gomez et al., 2004). With the  transformation of retail 

from brick­and­mortar stores to e­commerce, decision support for users has become ubiqui­

tous  (Maedche  et  al.,  2016). With  the  recent  attempts  to  shift  to  virtual  commerce  (i.e., 

shopping in immersive virtual 3D environments), the importance of User Assistance Systems 

(UAS) as an  interface between buyer and seller has  increased (Acar & Tekinerdogan, 2020). 

Although the visual acuity of modern headsets has improved, reading text when interacting 

with 3D objects  in VR can still be cumbersome. Thus,  it makes sense to support consumers 

with a comfortable  tool  that allows  for  side­by­side comparisons  in 2D as on e­commerce 

platforms.  Following  Friemel et al.  (2018), we deem adaptivity and  interference  timing  as 

elemental for successful customer interactions with such an UAS.  

Traditionally, UAS rely on deliberate user input, such as pressing a button, a gesture, 

or  voice  activation.  In VR, manual UAS  activation  can be  cumbersome  and  inefficient be­

cause users cannot  see  the buttons on  the controllers. The  limited availability of different 

buttons on VR controllers intensifies the issue and, thus, the user experience may improve if 

activation happens automatically. In contrast to basic manual system invocation, we propose 

to analyze the consumer’s gaze, track product comparison patterns, and use them to deter­

mine the UAS interference timing.  

However, it is not clear how an adaptive UAS impacts the consumer’s perceived trust. 

A UAS with gaze­based appearance may be more effective than a UAS that  is present from 

the very beginning because  it avoids any negative  impact on the overall first  impression by 

distracting and occluding the products. On the other hand, consumers may lack control over 

the system and feel patronized by an automatic appearance paradigm. Furthermore, as ex­

plainability is an important factor for regulators, it is a valuable insight whether an explana­

tion to the consumer (about how and why the UAS appears) influences their perceived trust 

in the system (Angerschmid et al., 2022). 

We  compare  two passive  interference paradigms: UAS present  from  the beginning 

(NoCtx) and context­aware UAS  interference (Ctx). As second dimension of comparison, we 

either provide explanations about how and why the UAS interferes (Expl) or we do not pro­

vide any explanation (NoExpl). As Figure 32 shows, the UAS helps to compare multiple prod­
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ucts in a tabular format. In the context­aware condition, the system appears when consum­

ers start to compare two products. We detect this moment by means of eye tracking and use 

the first gaze pattern that goes back and forth between two different products. The experi­

ment design aims to  identify differences  in perceived trust between the basic and the con­

text­aware UAS interference that may be moderated by perceived intelligence of the system 

and perceived control over the system. 

Figure 32. The UAS shows a comparison matrix to inform the consumer’s  

purchase decision. 

This paper contributes to the literature body in following ways: (i) It strengthens the theo­

retical understanding of  the  relation between context­awareness of a UAS and consumers 

intention to trust  the system.  (ii)  It provides guidance  if an explanation about  the  interfer­

ence timing  improves the consumer’s trusting intentions, and (iii) it presents a data­driven 

comparison  of  different mediation models  and  an  alternative moderated mediation  ap­

proach. Moreover,  the presented artifact design  informs practitioners who want  to  imple­

ment similar adaptive UAS. 

6.2 Background 

6.2.1 User Assistance Systems 

At the nexus of consumer behavior and decision support, user assistance is “an intelligent 

system’s capability to assist users while performing their task by means of human­,  task­, 

and/or context­dependent augmentation of […] human­computer interaction.” (Morana et 

al. 2020, p. 189). Examples for common types of UAS in modern computer software are help 

systems, tutorials, contextual menus and tooltips. By providing consumers with relevant  in­
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formation, UAS can make technology more accessible and user­friendly (Olenberger, 2023). 

Among the possible benefits that UAS offer are improved user experience, reduced support 

costs, and increased technology adoption (Friemel et al., 2018; Olenberger, 2023). 

6.2.2 Context­awareness of the UAS 

Context­awareness of computer systems has been subject to  investigation for more than 

two decades (Abowd et al. 1999; Barkhuus and Dey, 2003, Chittaro and Ration 2000; Capur­

so et al. 2018; Lallemand and Koenig 2020). Schilit et at. (1994) have been first to introduce 

the concept of context­aware applications and analyzed it in the domain of mobile distribut­

ed computing.  In  their categorization,  they  list proximate  selection  (the category  in which 

our UAS fits in) and describe it as “a user­interface  technique where  the  objects  located 

nearby are emphasized or otherwise made easier to choose” (Chen and Kotz 2000, p. 3). 

Since  then,  further  definitions  emerged  that  describe  different  levels  of  interactivity  and 

delineate active and passive context­awareness (Barkhuus and Dey 2003). An active system 

adapts to the context independently where a passive system asks to user to do so. 

In  the domain of human­computer  interaction, context­aware  interfaces are a  frequent 

subject of investigation (Stefanidi et al. 2022). Several studies mention the potential of con­

text­awareness to improve the user experience by tracking and adapting to the user’s state 

(Carrera­Rivera et al. 2022; van Hove et al. 2017; Zhang and Uruchurtu 2011). However, pre­

vious  research has also studied cases  in which UAS  failed  to be beneficial  (Dey 2009). The 

probably most  famous  negative  example is the Microsoft Office Assistant “Clippy”.  Such 

failed assistance approaches may have  left  traces  in  the minds of  future virtual commerce 

users,  increasing the  importance of  thoroughly understanding the  impact of context­aware 

systems on consumer trust. 

For smart user assistance, tracking the user’s state and then quickly adapting to it sounds 

like a good strategy. The user state  refers  to  the current condition or situation, which can 

include  their  location,  other  entities  they  are with,  and  the  interactable  objects  that  are 

nearby (Schilit et at. 1994). A related study has investigated interference timing as a form of 

context­awareness and concluded “that a small delay  in  the delivery of  information  could 

result in a large mitigation of disruption” (Bailey and Konstan 2006, p. 705). 
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6.2.3 Perceived trust in the UAS 

On a basic level, trust can be seen as the willingness to hand over control to another enti­

ty and give up own agency (Berg et al. 1995). The concept of trust plays an important role in 

decision­making  and  has  different  notions,  such  as  organizational  and  interpersonal  trust 

(Rotter  1967). McKnight  et  al.  (2002)  emphasize  trust­building  as  essential  factor  when 

adapting to new technology. A user’s trust in an unfamiliar trustee (the assistance system) is 

referred  to as  initial  trust  (Kim and Prabhakar 2004; McKnight et al. 2011; McKnight et al. 

2002). For  interpersonal  trust,  recent  research has  identified  the dimensions competence, 

benevolence,  and  predictability  as  constituting  elements  (Deljoo  et  al.  2018;  Afzal  et  al. 

2010). In a business context, the level of trust has implications for consumer satisfaction and 

their  intention  to  reuse  (Panigrahi et al. 2018; Ginting et al. 2023). The  literature suggests 

that  perceived  intelligence  of  the  trustee  (Trzebiński and Marciniak 2022)  and  perceived 

control over the trustee (Arcand et al. 2007; Huang et al. 2014) act as potential impact fac­

tors on the relationship between context­awareness and trust. 

“[T]rust is a critical factor in stimulating purchases over the Internet” (Quelch and Klein 

1996, p. 61) and  thus  it  is of  relevance  for e­ and virtual commerce.  In e­commerce,  trust 

plays a central role because of its high relevance not only for web stores but also for online 

platforms and marketplaces with a  large number of buyers and sellers (Corbitt et al. 2003; 

Jones  and  Leonard  2008).  Empirical  evidence  from  a  desktop­based  experiment  suggests 

that consumers with high overall trust in a particular vendor also have a higher intention to 

purchase an offered product (Oliveira et al. 2017). Further authors have investigated how VR 

may foster trust and the results suggest that offering an immersive virtual commerce outlet 

may facilitate a vendor’s overall trustworthiness (Papadopoulou 2007; Gupta et al. 2020). 

6.2.4 Explanations of UAS actions 

As  regulators  are  currently  shaping  ethical  guidelines  and  laws  for  future  virtual  com­

merce applications, it is a relevant question how an explanation about the adaptive behavior 

can alter consumers’ perceived trust  in the system  (Angerschmid et al. 2022). Explanations 

can  be  categorized  in  how  and why  statements  (Liao  et  al.  2020)  and  specific  research 

streams may  have  an  own  focus.  For  example,  explainable  artificial  intelligence  research 

concentrates on why explanations, potentially because of  the black­box behavior of deep 

learning algorithms that makes  it difficult to explain how the system operates (Bauer et al. 
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2023).  Yet,  even  in  the  in  the  field  of  explainable  artificial  intelligence, how  explanations 

about the system‘s overall logic are discussed (Liao et al. 2020). Several studies have shown 

that explanations can enhance trust in a system (Rader et al. 2018; Dodge et al. 2019; Yang 

et al. 2020). However, other  authors  provide  evidence  that users do not  follow  the  algo­

rithm‘s advice if it is transparent (Poursabzi­Sangdeh et al. 2021) or that users are even less 

willing to trust a system when explanations are provided (Erlei et al. 2020). Overall, there is 

controverse empirical evidence about explanations and their  impact on the perception of a 

context­aware UAS. 

6.2.5 Perceived intelligence of the UAS 

Johnson et al. (2008) define a user’s perception of overall system intelligence as the sum 

of its intelligence, knowledge, and purpose. Likewise, in the context of human­robot interac­

tion,  previous  studies  have  shown  that  perceived  intelligence  depends  on  the  perceived 

competence, knowledge, responsibility as well as sensibleness  (Bartneck et al. 2009; Parise 

et al. 1999). 

Paralleling the research on intelligence perception of technology, the marketing literature 

focuses  on  determining  key  dimensions  of  perceived  product  intelligence.  Rijsdijk  et  al. 

(2007)  identify  six key dimensions  for perceived product  intelligence: autonomy, ability  to 

learn, reactivity, ability to cooperate, human­like interaction, and personality. They validate 

a now widely adopted scale by comparing non­intelligent with  intelligent products, such as 

autonomous  versus manual  lawnmowers,  regarding  their  impact  on  perceived  trust.  For 

non­human systems, only the dimensions autonomy, ability to learn, and reactivity apply. In 

the  following, we give a brief overview of these relevant sub­dimensions: Autonomy  is the 

degree  to which  the UAS  acts  independently  and  goal­directed  (Baber 1996).  The  second 

dimension is the ability to learn, and it refers to the degree to which the UAS can use prior 

information and adapt to the consumer’s needs (Nicoll 1999). The third relevant intelligence 

dimension  is reactivity and  it refers to the ability of the UAS to react to changes  in  its envi­

ronment and respond to stimuli  (Bradshaw 1997).  In  line with Moussawi et al. (2021), who 

investigated personal intelligent agents, we argue that perceptions of intelligence may play a 

role for the trust in a system. 
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6.2.6 Perceived control over the UAS 

The concept of control describes whether an  individual perceives a feedback mechanism 

contingent on  their own behavior or  independent of  it. Rotter  (1966) builds up on  theory 

about the human cognitive reward system and describes control as an individual’s percep-

tion of the causal  link between their actions and the outcome. Perceived control has many 

facets and involves different constructs and theoretical ideas, such as locus of control, causal 

attributions,  learned helplessness, and  self­efficacy  (Skinner et al. 1998). The  level of per­

ceived control seems to be highly dependent on cultural and individual differences (Hornsey 

et al. 2019; Skinner et al. 1998) but there are certain general tendencies.  If an outcome  is 

consistently contingent on the preceding behavior, a notion of perceived control  is present 

while, on  the other hand,  if  the outcome has a chance component or  is  independent,  the 

feeling of control may be weaker or absent. 

In the context of adaptive UAS in virtual commerce, perceived control is an integral part of 

the consumer experience (Hu 2023). A recent study showed that perceived control and pur­

chase  intention go hand  in hand  (Zhao et al. 2023). However, the used 360° videos do not 

allow for movement and interaction. Thus, the results in an immersive VR setup may vary. 

6.2.7 Eye tracking in VR 

UAS can leverage the capabilities of bio­sensors, such as eye tracking (ET) cameras, to rec­

ord and respond to the state of the consumer (Gellersen et al. 2002). Gaze patterns are suit­

able for tracking visual attention (Duchowski 2017) but ET research heavily relies on the eye­

mind hypothesis (Just and Carpenter 1980). The eye­mind hypothesis only holds if individu­

als do not  intentionally direct  their  attention  and  visually  focus on  a  certain object while 

thinking about something completely different. Even though there are further threads to the 

validity of ET research  (Orquin and Holmqvist 2018), experimental findings  indicate the ro­

bustness and replicability of ET results in numerous scenarios (Holmqvist et al. 2011). Previ­

ous  research combined ET and VR and  showed  that visual attention and pupillometry can 

help to learn about the user state (Pfeiffer et al. 2020; Meißner et al. 2019; Wang et al. 2014; 

Novák et al. 2023) and thus may inform gaze­based adaptive features of a UAS. Further pre­

vious ET studies built upon the Engel­Kollat­Blackwell decision phase model that subdivides 

decision processes into different phases, such as orientation, evaluation, and validation (En­

gel et al. 1968; Russo and Leclerc 1994). They determined the transition between different 
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phases by simple rules based on ET features, like refixations on products. For the right timing 

of user assistance, this shift between orientation and evaluation may be of interest. Peukert 

et al. (2020) pursued an on­the­fly attempt to determine the phases and used ET to identify 

the first pairwise product comparison that indicates a transition from orientation to evalua­

tion phase. That argue  that after  starting  to evaluate  two of  the buying options  in detail, 

help may be appreciated by the user. 

6.3 Hypotheses 

6.3.1 Context­awareness 

Barkhuus and Dey  (2003)  report  that context­awareness  facilitates a smooth  interaction 

between humans and information technology. Pointing to the same direction, Richthammer 

and Pernul (2020) present results indicating that context­awareness positively influences the 

purchasing  behavior  of  consumers  when  using  a  recommender  system.  A  further  study 

shows  that  context­awareness  allows  for  an  increased  consumer  value  for  location­based 

mobile services (Vos et al. 2009). 

Following these positive reports on effects of context­awareness  in related domains, we 

transfer  the  idea  to a virtual  commerce  shopping  scenario and,  compare a  context­aware 

UAS with one  that  is  immediately present.  In our case, context­awareness means  that  the 

consumer’s gaze patterns activate the UAS after the  first comparison of two products. The 

effect may be negative as an adaptive  interference of the UAS can appear intrusive and the 

lack of control may diminish the user experience. On the other hand, if a UAS is present from 

the very beginning, it could occlude part of the products and negatively impact the user ex­

perience as well. We expect the  first effect to be stronger and hypothesize  that perceived 

trust increases when users are given time to oversee the shelf before displaying the UAS that 

helps comparing the products. Thus, we formulate following hypothesis: 

H1: A context­aware appearance of the UAS increases perceived trust in the UAS. 

6.3.2 Explanation effects 

Explanations are revealing the system's internal mechanisms to its users and that plays an 

important  role  in  fostering  trust  (Nunes  and  Jannach  2017). Related  studies  indicate  that 

explanation  interfaces  can  foster  trust building  (Pu  and Chen 2006)  and  that  they  impact 
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confidence in assisted decision making (Zhang et al. 2020). A further recent study found that 

“[e]very explanation improves users’ appropriate trust in […] the human­machine collabora­

tion” (Yang et al. 2020, p. 197). Even  though  there  is also  contrary experimental evidence 

that  reports  negative  effects  of  explanations  (Poursabzi­Sangdeh  et  al.  2021;  Erlei  et  al. 

2020), we pose following hypothesis: 

H2: The explanations about how and why the UAS appears increase perceived trust in the 

UAS. 

6.3.3 Mediations 

On  one  hand,  trust  in  the  system  and  control  over  the  system  form  a  tight  bond 

(Castelfranchi  and  Falcone  2000; Bijlsma­Frankema  and Costa  2005)  and Möllering  (2005) 

even sees them as duality. Experiments suggest that giving up control leads to a decrease in 

trust (Muir and Moray 1996; Lee and Moray 1992). Trust in the system and the intelligence 

of this system form an equally tight bond (Haring et al. 2013) and empiric evidence suggests 

that perceiving an entity as intelligent leads to an increase in trust (Haring et al. 2013; Mous­

sawi et al. 2021). 

We believe  in a positive sentiment  in  favor of the context­aware UAS. When comparing 

instant and adaptive UAS  interference both the perception about control over the UAS and 

intelligence of the UAS may change. The adaptive UAS offers only  little control while users 

may perceive timely interference as more intelligent in comparison to the instantly available 

UAS. We expect to observe a positive effect of the adaptive UAS  interference, even though 

the  indirect effects of perceived control and system  intelligence may neutralize each other. 

Overall, we conjecture that the effect of context­awareness on trust  is mediated by two  la­

tent constructs with opposite signs: control over the system and the intelligence of the sys­

tem.  In other words, we expect opposed  impacts of perceived control over the system and 

the perceived  intelligence of  the  system on  the perceived  trust  level of  the user. Our hy­

potheses regarding these mediations read as follows: 

H3a: Context­awareness effects on perceived  trust are mediated by  the opposing  influ­

ences of perceived control over the UAS and perceived intelligence of the UAS. 

H3b: Explanation effects on  trust are mediated by  the opposing  influences of perceived 

control over the UAS and perceived intelligence of the UAS. 
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6.4 Method 

6.4.1 Experimental design 

We manipulate  the  context­awareness of  a  gaze­based UAS  (Ctx)  and  the  explanations 

about  its  behavior  (Expl),  as  shown  in  Figure  33.  The manipulation  of  context­awareness 

consists of  two  interference paradigms:  (a)  the UAS  is present  from  the beginning and  (b) 

context­aware  interference of the UAS. We argue that a consumer’s willingness to trust a 

UAS depends on the perceived  intelligence (Int) of the UAS and the perceived control over 

the UAS (Ctrl). Therefore, we see intelligence of the UAS and control over the UAS as latent 

constructs that mediate the relationship between context­awareness and trust. 

 

Figure 33. Base model with two parallel mediations. 

The experiment  follows a 2x2 between­subjects design;  it has an ethics approval, and a 

pre­registration (AsPredicted #135337). The manipulation of context­awareness means that 

participants either see the UAS from the beginning of a trail or that the UAS  interferes right 

after the first product comparison. The second treatment dimension  is whether the partici­

pant receives an explanation of the UAS behavior before completing the questionnaire  (see 

the supplementary material for the explanation texts). 

We created the VR scenes  in Unity; they consist of an onboarding environment and  the 

showroom  in which  participants  perform  three purchasing  tasks  sequentially.  The  experi­

ment takes place  in a  laboratory room with a 3x4m VR area, a VR computer, and a survey 

computer (as illustrated in supplemental Figure 37). We use an HTC Vive head mounted dis­
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play (HMD) that has integrated ET cameras with 250Hz. Overall, the experiment  is designed 

to last approximately one hour. 

6.4.2 Manipulation of context­awareness 

To detect the moment when the context­aware UAS appears, we use ET and determine 

the  first X­Y­X product comparison as an  indicator  (Russo and Leclerc 1994; Peukert et al. 

2020). To this end, fixations and saccades are determined in run­time using a saccadic veloci­

ty­based algorithmic approach  (I­VT) as described by Salvucci and Goldberg  (2000) and the 

gaze  targets  are  determined  using  ray  casting  (Pietroszek  2019).  For  saccades,  we  set 

100°/second as the lower angular speed threshold (Holmqvist et al. 2011), and we limit fixa­

tion durations to 0.1 seconds as the lower threshold and 10 seconds as the upper threshold 

(Duchowski 2017).  If  the  algorithm detects a  fixation, we  store  the event  in a buffer  that 

keeps the events of the past 10 seconds. With every new fixation, we check if an X­Y­X prod­

uct comparison pattern occurred within this buffer window. 

6.4.3 Measurements and constructs 

In the survey, which takes place immediately after the VR experience, we ask the partici­

pants  questions  about  their  perceived  control  over  the  UAS  (Kidwell  and  Jewell,  2003; 

Armitage et al., 1999), perceived intelligence of the UAS (Rijsdijk et al. 2007), and their trust 

in the UAS (Thatcher et al. 2011; McKnight et al. 2002). We use multiple items for autonomy, 

ability to  learn, and reactivity to constitute the perceived  intelligence construct. We do not 

evaluate  the human­likeness or personality of  the UAS. As  a  comparison matrix,  the UAS 

does not have an avatar or other humanoid traits. The construct for perceived control also 

consists of multiple items for benevolence, competence, and predictability. 

As exploratory control variables, we assess the participants’ affinity for technology using 

the ATI­S scale (Wessel et al. 2019) and their disposition to trust technology (Lankton et al. 

2015). We measure all constructs on 7­point Likert scales and adapt all questions to fit our 

experiment (what includes providing German translations). 

A spreadsheet with the exact wording of all items is available  in the accompanying online 

repository (Weiß 2024). 
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6.4.4 Procedure 

On arrival, we  randomly assigned participants  to one of  the  four conditions and started 

the corresponding questionnaire. Our consent form informed participants about the ethical 

standards and asked  them  to agree  to pseudonymized publication of  their data. After  the 

participants  accepted  these  terms, we  determined  the  participants  dominant  eye  (Miles 

1929) and measured their interpupillary distance to adjust the HMD accordingly. Participants 

watched a video that explained the upcoming scenario, tasks, controller usage, and how to 

interact with  the UAS. Then,  the experimenter helped  them  to  fit  the HMD  to  their head. 

After a 5­point ET calibration and a reading test, participants entered the training scene and 

practiced the interactions that they previously saw in the video, guided by the experimenter. 

The training environment consisted of the same shelf scene that we used for the subse­

quent decision task, but the products were baking powder  instead of muesli. To familiarize 

the participants with the controllers, the experimenter asked them to pick up a product, ac­

tivate the shopping list, use the binocular function to read details on the packaging, activate 

the UAS for three products, compare the products, and place one product in a shopping cart 

next to the shelf. After viewing and canceling the confirmation dialogue, the participants had 

the chance to ask last questions before moving on to the experimental decision tasks. 

For each of these decisions, the shopping shelf was  filled with 24 different muesli prod­

ucts on randomized shelf positions. We designed the tasks in such a way that only one prod­

uct met the set of criteria specified  in the task  (see  the online supplementary material  for 

the task texts). For example, participants had to search for a chocolate muesli with a low fat 

and sugar content. They also had to consider a nut allergy and, thus, avoid products contain­

ing nuts. Participants were able to check these criteria at any time using  the shopping  list. 

The tasks were  incentivized  in  that participants received a  fixed reward of 12 Euro  for  the 

entire experiment and had  the opportunity  to earn an additional 1 Euro  for each product 

selected correctly. 

After completing all three tasks, half of the participants received an explanation describing 

how and why the UAS appeared. We displayed the explanation as text in VR and additionally 

provided  it on paper after our participants detached the HMD (see supplementary material 

for the explanation texts). 
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6.4.5 Statistical modelling and sample size 

In  our  Bayesian  analysis, we  report  distributions  instead  of  point  estimators(Kruschke 

2014; McElreath 2018; van Doorn et al. 2021; Martin 2018). With a small sample and when 

assumptions about  the population are hard  to  fulfill, a Bayesian modeling approach offers 

advantages over other traditional approaches (van de Schoot et al. 2021). Bayesian sample 

size considerations are about achieving desired credibility  intervals and posterior accuracy, 

and  there  is no  closed  formula  to  calculate  the needed number of observations based on 

expected effect sizes (van de Schoot et al. 2014; McElreath 2018). Taking the substantial cost 

of sequential experimental VR sessions into consideration, we pragmatically aim for the min­

imum number of observations that allows us to assume a normal distribution of the drawn 

sample. Overall, we collected 120 clean observations, 30 for each treatment group.  

With  the  small dataset and  coarse  sample  size determination, we deem  it advisable  to 

perform a model comparison that evaluates different prior distributions and model variants. 

In our analysis, we relax the assumption for a normal prior distribution by comparing a mod­

el that utilizes normal prior distributions with models that utilize  less  informative Student­t 

prior distributions. The student­t distribution allows  to express more uncertainty, as  it has 

heavier  tails  compared  to  the  normal  distribution  and  assigns  higher probability  to more 

extreme values. 

6.4.6 Participants 

The participants (72 females and 48 males, mean age = 26.2, SD = 5.5) were recruited on 

our  campus  and were mostly  students. Our  questionnaire  and  procedure were  bilingual, 

enabling 97  (80.8%) German  speakers and 23  (19.2%) English  speakers  to participate. We 

excluded one participant who could not wear the VR headset (due to vision problems) and 

two participants who demonstrated  insufficient  language proficiency  in the selected survey 

language (German or English). 

6.5 Results 

We perform  the  following analysis with  JASP  (van Doorn et al. 2021), python 3.10 with 

additional libraries, especially the package PyMC for the Bayesian models (Patil et al. 2010). 

The aggregated data and  code are available  in  the accompanying online  repository  (Weiß 

2024). For the sampling mechanism, PyMC relies on a No U­turn sampler (NUTS) implemen­
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tation (Lao and Louf 2020). First, we provide an overview of the main constructs in Figure 34 

which shows the responses for the constructs control, intelligence, and trust on a per­group 

basis. 

 

Figure 34. Boxplots per treatment group for control, intelligence, and trust. 

6.5.1 Reliability and control variables 

Supplementary Table 17 shows the reliability of the constructs. With a Cronbach’s 𝛼 > 0.8, 

most constructs display good reliability (Petter et al. 2007). For the three benevolence items, 

the value of 𝛼 = 0.791  is slightly below the commonly applied threshold of 0.8, but we still 

deem the construct valid. To check whether the questionnaire items map to the theoretical 

constructs, we perform a confirmatory factor analysis that  is shown  in Table 14. The  items 

for the theoretical sub constructs benevolence, competence, and predictability map correct­

ly and the correlation between the factors is moderate (see supplementary Table 20). 

Table 14. Factor loadings for perceived trust with fixed number of three factors. 

   Factor 1  Factor 2  Factor 3  Uniqueness 

Predictability [TP002]  0.921      0.168 

Predictability [TP001]  0.853      0.311 

Predictability [TP004]  0.809      0.330 

Predictability [TP003]  0.561      0.621 

Competence [TC002]    0.957    0.137 

Competence [TC001]    0.804    0.337 

Competence [TC003]    0.729    0.312 

Benevolence [TB001]      0.944  0.251 

Benevolence [TB002]      0.806  0.254 

Benevolence [TB003]      0.501  0.667 

Note.  Applied rotation method was promax. 
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To  check  for  confounds  in  the experimental data, we analyze  the  control  variables. We 

conduct Bayesian ANOVAs (van den Bergh et al. 2019) for the participants’ affinity for tech-

nology (measured by the ATI­S scale) and their disposition to trust technology. For both con­

structs  the  ANOVA  indicates  no  significant  differences  between  the  four  experimental 

groups and favored the respective null model. We omit the tables but provide the JASP file 

in the accompanying online repository (Weiß 2024). 

6.5.2 Mediations 

To  address  our  hypotheses,  we  use  Bayesian mediation models  (Hayes  2017;  Yuan  and 

MacKinnon 2009) that utilize different prior distributions and control variables. We compare 

these models and select the model with the highest expected log pointwise predictive densi­

ty  (ELPD).  The  ELPD  provides  a  common measure  for  the  generalization  capability  of  the 

model at hand  (Martin et al. 2021). For the prior distributions, we apply Gaussian distribu­

tions with 𝜇 = 0, 𝜎 = 3 and Student­t distributions with 𝜇 = 0, 𝜎 = 3, and 𝜈 = 15. For the vari­

ance terms (𝜎𝑐𝑡𝑟𝑙 ,𝜎𝑖𝑛𝑡 ,𝑎𝑛𝑑 𝜎𝑡𝑟𝑢𝑠𝑡), we use Half­Cauchy distributions with 𝛽 = 1 (Polson and 

Scott 2012). We  fit  the models using  four Markov chains with 4000 samples each, with an 

acceptance rate threshold value of 0.8 (M. J. Betancourt et al. 2015), and monitor the stabil­

ity of the chains (van de Schoot et al. 2014). The base model, as shown in Figure 33, is consti­

tuted of linear functions and can be denoted using following equations, where 𝑖 represents 

the intercept and 𝑎 and 𝑏 are the respective coefficients: 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ~ Prior(𝑖𝑐𝑡𝑟𝑙  +  𝑎0  ∙  𝐶𝑡𝑥 +  𝑎1  ∙  𝐸𝑥𝑝𝑙 ,  𝜎𝑐𝑡𝑟𝑙), 

𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒 ~ Prior(𝑖𝑖𝑛𝑡 +  𝑎2  ∙  𝐶𝑡𝑥 +  𝑎3  ∙  𝐸𝑥𝑝𝑙 ,  𝜎𝑖𝑛𝑡), 

𝑇𝑟𝑢𝑠𝑡 ~ Prior(𝑖𝑡𝑟𝑢𝑠𝑡 + cctx
′  ∙  𝐶𝑡𝑥 + cexpl

′ ∙  𝐸𝑥𝑝𝑙 + 𝑏0 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝑏1 ∙ 𝐼𝑛𝑡,  𝜎𝑡𝑟𝑢𝑠𝑡). 

 

We evaluate model  variants with Student­t prior distributions  that utilize disposition  to 

trust  (Dsp),  technology affinity  (Ati) or both as control variables, and a variant of  the best 

model that does not consider explanations. Additionally, we evaluate an alternative moder­

ated mediation approach  (Muller, 2005) which models the explanation about the how and 

why of the UAS appearance as moderator for the mediation of context­awareness on trust 

(see Figure 35). This alternative moderated mediation model can be denoted using following 

equations: 

   



    163 

 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ~ Prior(𝑖𝑐𝑡𝑟𝑙  +  𝑎0  ∙  𝐶𝑡𝑥 +  𝑎2  ∙  𝐶𝑡𝑥 ∙  𝐸𝑥𝑝𝑙 +   𝑎4 ∙  𝐸𝑥𝑝𝑙,  𝜎𝑐𝑡𝑟𝑙), 

𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒 ~ Prior(𝑖𝑖𝑛𝑡  +  𝑎1  ∙  𝐼𝑛𝑡 + 𝑎3  ∙  𝐶𝑡𝑥 ∙  𝐸𝑥𝑝𝑙 +   𝑎5 ∙  𝐸𝑥𝑝𝑙 ,  𝜎𝑖𝑛𝑡), 

𝑇𝑟𝑢𝑠𝑡 ~ Prior (
𝑖𝑡𝑟𝑢𝑠𝑡 +  cctx

′  ∙  𝐶𝑡𝑥 + cexpl
′ ∙  𝐸𝑥𝑝 + 𝑏0 ∙ 𝐶𝑡𝑟𝑙 + 𝑏1 ∙ 𝐼𝑛𝑡 

+ 𝑎6 ∙  𝐷𝑠𝑝 + 𝑎7 ∙  𝐴𝑡𝑖,  𝜎𝑡𝑟𝑢𝑠𝑡
). 

 

 

Figure 35. Moderated mediation model as alternative approach. 

Table 15 shows the comparison results of all evaluated models. The base model with Stu­

dent­t prior distributions has a better ELPD score than the base model with Gaussian priors. 

This  initial  finding motivates  the  evaluation of  further model  variants with Student­t prior 

distributions. The overall best­performing model with Student­t prior distributions uses dis­

position  to  trust as  single  control variable. The  runner­up model also uses  Student­t prior 

distributions but does not  take  the explanations  into account. The difference  in ELPD be­

tween these two models is only 0.461 but the difference in standard error (SE) of the model 

without explanation path  is considerably higher.  In our comparison, adding  the Ati control 

variable decreases model ELPD performance. It  is also noteworthy that the moderated me­

diation approach ranks fourth and has a difference in ELPD 1.456 in comparison to the best 

model. 
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Table 15. Model comparison for combined mediations. 

Models  Rank  ELPD 

LOO 

P 

LOO 

ELPD 

Diff 

SE 

Student­t Dsp  0  ­153.426  7.261  0  8.883 

Student­t Dsp without explanation path  1  ­153.888  6.250  0.461  9.018 

Student­t Dsp Ati  2  ­154.232  8.234  0.806  8.821 

Student­t Dsp moderated mediation  3  ­154.883  7.305  1.456  8.959 

Student­t  4  ­156.908  6.039  3.480  8.684 

Gaussian  5  ­157.640  7.038  4.214  8.604 

Student­t Ati  6  ­157.657  6.238  4.231  9.059 

 

We show the best model, Student­t Dsp,  in Figure 36 with mean values for the posterior 

distributions of all  individual parameters  and with  the  corresponding 94% highest density 

interval (HDI) threshold values. The 94% HDI is a common choice and the default value set in 

the PyMC package, although some authors prefer other values (McElreath 2018). The dotted 

arrows  in Figure 36  indicate effects that are not significantly different from zero (according 

to the chosen 94% HDI threshold). For the parameters a1 and c1’, the value zero  is only on 

the tail of the distribution, and the  respective 94% HDI almost does not cover  it. Thus, alt­

hough not significant, there is a negative tendency for the explanations regarding their effect 

on perceived control over the UAS and the direct effect on trust. 

 

Figure 36. Diagram of the best combined Bayesian mediation model  

with parameter mean values and 94% HDI. 

In  
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Table 16, we  list  the  total, direct, and  indirect effects  for  the best combined mediation 

model. The 3% and 97% HDI columns represent the lower and upper thresholds for the 94% 

HDI  that  are  also  shown  in  Figure  36.  Supplementary  Figure 39  shows  the  corresponding 

posterior distributions with 94% HDI interval indicators. Regarding the total effects, the pos­

terior distribution for context­awareness (mean = ­0.420, SD = 0.185) is significantly different 

from zero. This means the context­aware condition had a negative effect on trust, what  is 

opposed  to  what  we  expected.  While  a  total  negative  effect  is  present  for  context­

awareness, the total effect of the explanations is not significant (as it has a negative sign but 

is close to zero). Thus, the best model does not provide support for both H1 and H2. 

We  find  that  the  best  model  supports  both  a  negative  indirect  path  from  context­

awareness via perceived control over  the UAS  (mean =  ­0.329, SD = 0.100) and a positive 

path from context­awareness (Ctx) via perceived intelligence of the UAS (mean = ­0.184, SD 

= 0.077), and thus H3a is supported. However, parameters for the explanation effects (Expl) 

are not significant and therefore H3b is not supported. 

Table 16. Posterior parameter distributions for the Student­t Dsp mediation model. 

Effect  Mean  SD  HDI 3%  HDI 97% 

Total effect Cxt (a0*b0+a1*b1+c0’)  ­0.420  0.185  ­0.764  ­0.073 
Total effect Expl (a2*b0+a3*b1+c1’)  ­0.037  0.183  ­0.373  0.315 
Direct effect Ctx → Trust (c0’)  0.002  0.172  ­0.324  0.328 
Direct effect Expl → Trust (c1’)  ­0.260  0.152  ­0. 548  0.024 

Indirect effect Ctx → Control → Trust (a0*b0)  ­0.329  0.100  ­0.519  ­0.147 
Indirect effect Expl → Control → Trust (a1*b0)  ­0.093  0.066  ­0.222  0.026 

Indirect effect Ctx → Intelligence → Trust (a2*b1)  0.184  0.077  0.048  0.333 
Indirect effect Expl → Intelligence → Trust (a3*b1)  0.039  0.065  ­0.083  0.164 

6.6 Discussion 

The main insight of our study is that participants trusted the context­aware UAS less than 

the  static variant. The experiment could not confirm  findings  from other domains  that  re­

ported more consumer trust for the context­aware system (H1). Instead, the best mediation 

model  suggests  a negative  total effect of  the  context­aware UAS  (which  consists of  gaze­

based interference of the comparison matrix). 

The model comparison  in Table 15  indicates  that disposition  to  trust  is a useful control 

variable while using affinity  for  technology has no positive  impact on model performance. 

The  Student­t model  that  solely  uses  affinity  for  technology  as  control  variable  performs 
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even worse  than  the base model with Gaussian priors. Adding  the  affinity  for  technology 

control variable  in combination with disposition to trust also reduces the ELPD score. Like­

wise,  the comparison  shows  that our data­driven approach  favors  two parallel mediations 

over a moderated mediation, even though the difference in model performance according to 

the ELPD metric is small. 

We acknowledge that different notions of context­awareness are possible, and  it  is  likely 

that other context­aware UAS  implementations  lead to different results. We recall that our 

context­aware UAS appeared after  the  first X­Y­X product  comparison pattern. During  the 

experiments, we observed that invoking the UAS by this single rule was not sufficient for all 

participants. We conclude that the simple gaze patterns that we used were not  ideal as an 

interference criterion. To further generalize, we propose to introduce a band filter to ascer­

tain a time interval with minimum and maximum values for the UAS appearance. 

The Student­t Dsp mediation model suggests no significant explanation effect about how 

and why the UAS appeared on the participants perceived trust, what is contrary to what we 

expected (H2) and what the literature suggests. We conclude that control over the UAS and 

intelligence of the UAS are likely not the sole key mediators for the effect of an explanation 

on perceived trust. As our results are averse to previous findings, future research may focus 

and investigate this dimension separately. 

As expected, the indirect mediated explanation effects (via control over the UAS and intel­

ligence of the UAS) have different sign, but they are also not significantly different from zero. 

It may make a difference at what point in time the explanation is provided. During the exper­

iment procedure, we showed the explanation after the three purchase decisions were made, 

just before answering the questionnaire. The manipulation may be strengthened by provid­

ing the explanation to the participants prior to the decision  tasks. We note  that giving  the 

explanation prior  to the  tasks bears  the risk  that participants play with the gaze activation 

and introduce certain bias. Moreover, participants in the context­aware UAS group received 

the information that the UAS activates based on ET data, but they did not specifically know 

about  the X­Y­X gaze pattern. Providing  this explicit  information about how  to  trigger  the 

UAS may enhance trust in the system and alter the parameters of the presented mediation. 

Another viable approach could be to  introduce  intelligibility as a mediator and  let the UAS 

introduce its capabilities by itself (Lim 2010). 
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While both  indirect effects  for explanations are not significant,  the  indirect effects Con­

text­awareness → Control → Trust  (a0*b0) and Context­awareness →  Intelligence → Trust 

(a2*b1) are both significantly different from zero and have a different sign. In other words, 

we can report competing indirect effects for context­awareness but not for our explanation 

manipulation. When additionally considering the distributions for Explanation → Control → 

Trust (a1*b0) and Explanation → Intelligence → Trust (a3*b1) in supplementary Figure 39, it 

is easy to verify the relatively small mean effect sizes in the proximity to zero. Thus, we can 

further support H3a but not H3b. 

6.7 Conclusion 

Neither did we expect to find a negative relationship between the context­awareness of 

the UAS and participants trust, nor did we expect the explanation to have only a slight direct 

negative effect. We must acknowledge that for our scenario, the explanation effect is unlike­

ly mediated by perceived control and  intelligence of the UAS. Still, the study confirms that 

the effect of context­awareness on perceived trust is mediated by competing paths via per­

ceived control over the UAS and perceived intelligence of the UAS. 

For  the  comparison matrix  in our  scenario,  it  seems  advisable  to  refrain  from  context­

aware interference timing. For muesli products and a relatively small economic incentive  in 

our experiment,  the basic alternative was perceived as more  trustworthy, which  in  turn  is 

likely  leading  to a higher  intention  to  reuse and overall  satisfaction  (Acharya et al. 2022). 

However,  the product category  (especially more valuable goods) and other  impact  factors 

(such as product  involvement and saving potential) may alter the situation. For  instance, a 

comparison matrix  for  high­end  designer  furniture may  introduce  different  relationships, 

and  context­awareness may  be  appreciated  as  experience­enhancing  feature  of  the  sales 

environment for these products. In any case, a button­press to toggle the UI might also be a 

simple but effective means  to  improve  the user experience. Future experiments on  virtual 

commerce UAS, and particularly comparison matrices, should therefore consider evaluating 

manual activation paradigms as additional baseline. 

A limitation of our study is our working definition of context­awareness and the question 

if we really manipulated it. We argue that interference timing may work different than other 

adaptations. This issue points to a future research avenue which could continue investigating 

different notions of context­awareness. To provide another kind of context­aware UAS, re­
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searchers could leverage latest artificial intelligence developments, use prompt engineering, 

and fine­tune  large  language models to provide more salient manipulations. Applied to the 

virtual commerce scenario at hand, future research may  introduce a human­like agent that 

users can ask about the best muesli, given a set of criteria, instead of solving the search task 

on  their own. As agents and avatars come  into play,  the  intelligence sub­dimension which 

we did not consider in this work (ability to cooperate, human­like interaction, and personali­

ty) seem to be relevant mediators and should be incorporated into respective models. Even­

tually, virtual agents may be able to provide  individualized support which  is far superior to 

what  consumers  are  currently used  to  in  terms  of  advertisements, decision  support,  and 

recommendations. 
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6.8 Supplemental material 

6.8.1 Supplemental figures 

 

Figure 37. The room layout. A 3x4m laboratory environment with a dedicated VR comput­

er and a survey computer. 

 

   

Figure 38. Left: Mean perceived autonomy conditioned on  the UAS  type  (context­aware 

versus basic) visually interesting. Right: Mean perceived control conditioned on the Explana­

tion visually less strong, but still interesting. 
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Figure 39. Posterior distributions for the Student­t Dsp mediation model. 
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6.8.2 Supplemental tables 

Table 17. Reliability of the latent constructs. 

Construct  Cronbachs α  95% CI 

Intelligence  0.927745  [0.907 0.945] 

Reactivity  0.867878  [0.825 0.903] 

Ability to learn  0.958906  [0.946 0.969] 

Autonomy  0.835089  [0.776 0.88 ] 

Perceived control  0.851598  [0.799 0.892] 

Intrusiveness  0.832579  [0.778 0.877] 

Trusting Beliefs  0.814369  [0.761 0.86 ] 

Predictability  0.864595  [0.82 0.9 ] 

Benevolence  0.79075  [0.716 0.848] 

Competence  0.879306  [0.836 0.912] 

Disposition to trust  0.864862  [0.806 0.906] 

User Experience  0.829567  [0.779 0.872] 

 

Table 18. Factor loadings for perceived intelligence items. 

   Factor 1  Factor 2  Factor 3  Uniqueness 

Abilitytolearn[IL003]  1.046        0.077 

Abilitytolearn[IL002]  0.930        0.169 

Abilitytolearn[IL004]  0.889        0.251 

Abilitytolearn[IL001]  0.816        0.213 

Autonomy[IA002]     0.899     0.375 

Autonomy[IA003]     0.837     0.316 

Autonomy[IA001]     0.742     0.372 

Reactivity[IR004]        0.947  0.219 

Reactivity[IR003]        0.844  0.439 

Reactivity[IR002]        0.530  0.266 

Reactivity[IR001]        0.440  0.337 

Note.  Applied rotation method is promax. 
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Table 19. Factor loadings for perceived trust. 

  Factor 1  Factor 2  Uniqueness 

Benevolence[TB002]  0.815    0.371 

Competence[TC003]  0.793    0.342 

Competence[TC001]  0.722    0.430 

Competence[TC002]  0.713    0.340 

Benevolence[TB001]  0.691    0.533 

Benevolence[TB003]  0.576    0.686 

Predictability[TP002]    0.933  0.168 

Predictability[TP001]    0.833  0.332 

Predictability[TP004]    0.803  0.340 

Predictability[TP003]    0.588  0.618 

Note.  Applied rotation method is promax. 

 

Table 20. Factor correlation with manually adjusted number of three factors. 

   Factor 1  Factor 2  Factor 3 

Factor 1  1.000  0.306  0.050 

Factor 2  0.306  1.000  0.637 

Factor 3  0.050  0.637  1.000 

 

Table 21. Analysis of effects on trust. 

Effects  P(incl)  P(excl)  P(incl|data)  P(excl|data)  BFincl  

Ctx  0.600  0.400  0.216  0.784  0.184 

Expl  0.600  0.400  0.589  0.411  0.954 

Ctx ✻  Expl  0.200  0.800  0.029  0.971  0.120 
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6.8.3 Explanations 

6.8.3.1  Basic UAS 

How: The UAS has been available at all times, so that the help could be used immediately 

from the beginning. It has not adapted to your behavior. 

 

Why: The UAS was primarily intended to help you compare products (product comparison 

matrix). Once you started comparing, you could directly use the UAS to support you. 

6.8.3.2  Context­aware UAS 

How: The UAS decided when to offer you help based on real­time analysis of eye tracking 

data.  It did  this by analyzing your eye movements. Once you made a pairwise comparison 

between  two products,  the UAS was provided  to  you. The  system has  therefore behaved 

adaptively. 

 

Why: The UAS was primarily intended to help you compare products (product comparison 

matrix), which is why the help was only offered to you when you made the first comparison 

between  two products. Only  from  this point on was  the UAS helpful  for  you. Before,  the 

comparison matrix could have hindered you from gaining the overview by blocking your field 

of view. 
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6.8.4 Tasks 

6.8.4.1  Task 1 

A good friend is coming to visit you over the weekend, which is why you would like to 

get some muesli for breakfast. You know that your guest prefers muesli with chocolate. Your 

guest also  likes muesli from the Koelln brand. Specifically, your guest prefers a pure choco­

late muesli without any other flavors like cookies or crunch. Additionally, you are aware that 

your guest has a peanut allergy, so the product must not contain it. 

Finally, the muesli should be as cheap as possible. 

 

Figure 40. Solution for Task 1. 

6.8.4.2  Task 2 

A  good  friend  is  coming  to  visit  you over  the weekend,  so  you would  like  to  get  some 

muesli  for breakfast.  You  know  that  your  guest prefers muesli with  fruits.  Therefore,  the 

muesli should not only contain one fruit but should  include several different fruits (at  least 

two different ones). The muesli should also be  low  in sugar or have no added sugar. Lastly, 

the muesli should contain as little fat as possible (per 100g). 
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Figure 41. Solution for Task 2. 

6.8.4.3  Task 3 

A  good  friend  is  coming  to  visit  you over  the weekend,  so  you would  like  to  get  some 

muesli  for breakfast. You know  that your guest prefers crunchy muesli. Additionally,  since 

your guest enjoys eating chocolate, the muesli should be a crunchy muesli with chocolate (at 

least partially chocolate as an ingredient). You also want to buy a muesli with as much con­

tent in the packaging as possible. Lastly, the muesli should have as few calories (kJ/kcal per 

100g) as possible. 

 

Figure 42. Solution for Task 3. 
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